Блок управления точечной сваркой на микроконтроллере

Содержание
  1. Схема и этапы сборки точечной сварки своими руками из микроволновки
  2. Доступная точечная сварка из микроволновки своими руками
  3. Сделать аппарат для точечной сварки недорого
  4. Сборка трансформатора
  5. Мощное самодельное устройство
  6. Оснащение самодельного аппарата для сварки
  7. Управление самодельной контактной сваркой
  8. Что собой представляет схема споттера
  9. Блок питания и его схема
  10. Управление силовым тиристором точечной сварки споттер
  11. Схема управления с блоком индикаторов точечной сварки споттер
  12. Краткое описание работы точечной сварки споттер
  13. Состав схемы управления точечной сварки споттер
  14. Как сделать точечную сварку или споттер своими руками из сварочного аппарата, аккумулятора или микроволновки для кузовного ремонта: схема и видео
  15. Принцип работы споттера
  16. Свойства конструкции агрегата
  17. Возможности самодельного споттера
  18. Ключевая деталь споттера
  19. Блок управления точечной сваркой на микроконтроллере
  20. Список радиоэлементов
  21. Прикрепленные файлы:
  22. Мостовой сварочный инвертор с микроконтроллерным управлением
  23. Настройка инвертора
  24. CapWelder — точечная сварка на ионисторах своими руками
  25. Функциональная схема точечной сварки
  26. Электрическая схема макет печатной платы
  27. Корпус и механическая сборка
  28. Необходимые метериалы

Схема и этапы сборки точечной сварки своими руками из микроволновки

Блок управления точечной сваркой на микроконтроллере

Не удивляет, когда домашние мастера оснащают гаражи, производственные участки малого бизнеса самодельным оборудованием для сварки на уровне профессионального. К таким агрегатам относится и установка точечной сварки своими руками из микроволновки.

Доступная точечная сварка из микроволновки своими руками

Разнообразие методик сварки самодельным аппаратом подразумевает создание неразъёмного соединения. Условия процесса и свойства материалов различаются в технологическом подходе.

Итог действия – активизация связей молекул деталей посредством пластической деформации при термомеханическом воздействии, либо термоэлектрическом. Механическое действие применяется для создания физического контакта элементов без зазора.

Точечная сварка – скоростной метод сращивания без присадочных расходных материалов контактным способом. Конструктивная простота аппаратуры, компактность, дешевизна изготовления и эксплуатации выводят метод в лидеры по использованию.

Методика точечной сварки:

Принцип работы точечной сварки

  • Совмещение объектов в заданном положении;
  • Фиксация приложением давления извне;
  • Подача тока;
  • Мгновенный прогрев зоны приложения энергии;
  • Локальная пластичность и деформация зоны нагрева;
  • Сплавление элементов.

Самодельная ручная точечная сварка на основе трансформатора микроволновой печи применяется для соединения листов металла толщиной до 1 мм, сварки аккумуляторов, ремонтных работ.

Экономичность процедуры при прочности места контакта площадью до Ø10 мм обеспечит потребности малого бизнеса при минимуме затрат. При потреблении энергии в 0,8 кВт получаем 5–6-кратное увеличение мощности, 200-кратное возрастание силы тока. Режим работы — импульсный, предел длительности формирования сварочного ядра — 0,1 сек.

Сделать аппарат для точечной сварки недорого

Устаревшая, вышедшая из обращения модель микроволновой печи из-за поломки, с работоспособным трансформатором станет основой самодельного сварочного аппарата контактной сварки.

Аккуратно разбираем бытовой прибор – отдельные элементы, как подлежащий доработке и реконструкции трансформатор и кнопка включения, сетевой фильтр, кабель, пригодятся при сборке самодельного устройства.

Будьте внимательны: конденсатор под кожухом длительное время сохраняет заряд. Разрядите его. Достаточно закоротить контакты стержнем отвёртки.

Модернизированный трансформатор на выходе выдаёт результаты промышленных технических устройств:

Схема точечной сварки своими руками

  • Ток кратковременного импульса – свыше 1000 А;
  • Мощность – до 5 кВт.

Первичная обмотка трансформатора остаётся в неприкосновенности.

Она выполнена из провода большего диаметра. Вторичная обмотка удаляется за ненадобностью. Понадобятся острая стамеска и киянка, либо ножовка по металлу.

Чтобы не помять и не перерубить первичку, трансформатор желательно закрепить, а межобмоточное пространство заполнить гофрокартоном.

Металлические шунты для ограничения силы тока демонтируются. Сварной сердечник трансформатора с плотным заполнением обмотки затруднит демонтаж. Манипуляции по удалению проволоки облегчит сквозное высверливание. Избегайте касания сверлом внутренней поверхности сердечника. Операции по подготовке завершены.

Сборка трансформатора

Для вторичной обмотки рекомендуется использовать кабель КГ 1х35. Проводник эксплуатируется при длительном номинальном напряжении 1000 В. Долговременная токовая нагрузка — 300 А. Допускается кратковременная импульсная нагрузка в 1200 А.

Трансформатор микроволновки для точечной сварки

Модернизация трансформатора рассчитана на эту величину. Приобретите 2 м кабеля с наложенной синтетической плёнкой на токопроводящие жилы. Внешняя изоляция из шланговой резины 2,2 мм станет помехой. Покрытия 1,2 мм достаточно.

Для облегчения скольжения при намотке кабеля, сердечник плотно обматываем 3 слоями скотча. При старании и хорошем натяжении уложите 2–3 витка. Рассчитайте примерно равную длину выводов. Метраж определён с запасом длины выводов и удобства протяжки при укладке.

Допустимо применение для самодельного трансформатора контактной сварки многожильного мягкого кабеля путём сложения в пучок нескольких медных проводников. Ориентируйтесь на суммарный диаметр токопроводящих жил, минимальный показатель Ø10 мм.

Уменьшение количества витков вторичной обмотки компенсируется увеличением сечения обмотки. Напряжение и сила тока изменяются в десятки раз. Ориентиры контроля показателей на выходе самодельного трансформатора:

  • Напряжение холостого хода – 1,5–3 В;
  • Сила тока импульса – не менее 800 А.

Внимание! Работа без заземления и защитного кожуха опасна.

Мощное самодельное устройство

Для создания точечной сварки из микроволновой печи повышенной мощности ставится дополнительный самодельный трансформатор. Одноимённые выводы вторичных обмоток соединяются последовательно в единую цепь.

Обязательное условие – идентичность самодельных трансформаторов по количеству витков первичной и вторичной обмоток. Несогласование направления намотки витков вторичных обмоток спровоцирует противофазу с падением выходного напряжения до нуля.

Проверка правильности соединения:

Схема трансформатора от микроволновки

  • Проводится последовательное соединение обмоток трансформаторов;
  • Подача напряжения и контроль вольтметром на выходе со вторичной обмотки;
  • Повышение напряжения – ошибка сборки: спарены разноимённые выводы – на первичных напряжение падает, вторичные удваивают его;
  • Отсутствие напряжения – только одна из пар соединена одноимёнными выводами, следует изменить порядок подключения;
  • Соединение одноимённых выводов пары трансформаторов удваивает мощность без изменения напряжения.

Технические характеристики такого самодельного аппарата точечной сварки позволят проводить сварку стальных листов до 5 мм. Превышение силы тока импульса 2000 А потребует усиления электропроводки и подключения к промышленной сети.

Оснащение самодельного аппарата для сварки

Первое, что требуется для сварки – самодельные электроды из меди. Без точного подбора соответствия диаметру провода вторичной обмотки стержней из меди не сделать точечную сварку своими руками надёжной.

Самодельная установка контактной сварки

Мощность самодельного устройства обусловливает тип: жала паяльников для ручного контакта или рычажные сварочные клещи с давлением в центнер. Род деятельности влияет на ориентацию электродов. Для сварки аккумуляторов стержни устанавливают рядом, для сварки внахлёст – навстречу.

Протяжённость проводников минимизируют для сокращения потерь мощности. Негативное влияние оказывает и количество соединений. Пайка облуженных проводов к медным наконечникам снижает потери.

Обжимные соединения – очаги роста сопротивления. Электроды крепят на резьбе с тугой затяжкой. Болты, шайбы выполняют из сплавов меди. Удаление окислов проводят регулярно.

Концы электродов стачивают на конус, точку контакта оформляют сферой – площадь ядра сварки увеличивается в 2–3 раза относительно поверхности контакта самодельного устройства. Малый диаметр конца электрода повысит качество сварки, уменьшит усилие сдавливания.

Управление самодельной контактной сваркой

Органов управления сваркой 2: кнопка включения подачи электроэнергии на трансформатор, и рычаг сварочных клещей. Кнопка располагается на рычаге управления подвижным электродом.

Точечная сварка из микроволновки

Обеспечение сжатия достигается приближением электродов к оси рычага и его размером. Установите стационарное либо съёмное крепление самодельного аппарата, опоры неподвижного электрода. Гарантию достаточного контакта при сжатии даст рычаг из диэлектрика или обрезиненного металла длиной 0,6–1 м. Усилие сжатия — 30–100 кг.

Переключатель подачи тока самодельного устройства подключается к первичной обмотке трансформатора, находится под пальцем сварщика. Включение сварки во избежание подгорания электродов допускается при полном сжатии.

Визуальный контроль времени выдержки контакта определяется по цвету металла. При массовой сварке рекомендуется принудительное охлаждение трансформатора и электродов вентилятором, либо перерывы.

Что собой представляет схема споттера

Блок управления точечной сваркой на микроконтроллере

Силовая электрическая схема споттера давно прошла стадии разработки, экспериментов и используется для рихтовки авто в разнообразных вариантах.

После приобретения опыта работы с устройством возник вопрос автоматического управления режимами работы устройства с более точными регулировками и необходимыми защитами.

Споттер с режимом аппарата точечной сварки и споттер как сварочный аппарат для работы электродом должны иметь различную длительность и мощность импульса. Точка сварки может получиться слабой или слишком крепкой, что создаст дополнительные трудности при ремонте авто.

Фото 1. Споттер незаменим при проведении автомобильных кузовных работ.

Основные параметры, которым нужна точная регулировка для качественного результата работы, это мощность импульса и его длительность. Предлагаемая схема позволит подбирать и сохранять установки параметров как в режиме сварочный аппарат, так и делая точечную сварку.

Схема собрана на трех платах и состоит из двух функциональных частей:

  1. Плата, на которой расположен блок питания. Внешний вид можно посмотреть на фото 1.
  2. Две платы, на одной из которых расположен контролер и вторая с кнопками переключения и четырехразрядным индикатором.

Блок питания и его схема

Схема намотки трасформатора.

Схема блока питания показана на рис.1. Условно ее можно разделить на три составные части:

  • цепь питания первичной обмотки понижающего трансформатора;
  • понижающий трансформатор;
  • вторичная обмотка с диодным мостом и стабилизатором напряжения.

В цепи первичной обмотки трансформатора установлен сетевой фильтр, обычно используемый в импульсных блоках питания. Здесь он используется для защиты микросхемы контролера от импульсов, создающихся в сетевом напряжении при работе споттера.

Трансформатор можно использовать любой с напряжением 220 В/24 В при работе от сети в 220 В. При работе от сети в 380 В нужно применить соответствующий трансформатор и сетевой фильтр.

К вторичной обмотке подключен диодный мост со сглаживающими конденсаторами и стабилизатор напряжения на микросхеме LM2574.

С выхода микросхемы напряжение номиналов в 5 В подается на выходной разъем Х1 через цепочку LC – фильтра для устранения высокочастотных помех.

Отмеченные пунктиром соединительные линии должны быть минимальной длины и располагаться по возможности ближе ко второй ножке микросхемы IC1.

Рисунок 1. Схема блока питания.

Напряжение на клемме 1 разъема Х1 используется контроллером для определения нулевого уровня.

Напряжение с клеммы 7 разъема Х1 используется для запуска контроллера при положительной полуволне сетевого напряжения.

Изготовленная своими руками схема при отсутствии ошибок в сборке начинает работать без дополнительных настроек. Наличие напряжения в 5 В будет контролировать светодиод LED1.

Пускатель К1 предназначен для подключения сетевого напряжения при замыкании выключателя S1.

Вместо него можно использовать автоматический выключатель с защитой нужного номинала или подключать напряжение напрямую, при наличии предохранителей в питающий сети.

Управление силовым тиристором точечной сварки споттер

Фото 2. Внешний вид платы блока управления с контроллером.

Для управления силовым тиристором или симистором используется микросхема МОС3052. Эта серия микросхем специализирована для использования в устройствах подобного типа и при замене на аналоги. При этом необходимо внимательно оценить технические характеристики предлагаемого варианта.

При питании схемы от сетевого напряжения 380 В необходимо использовать симистор типа ВТА40 – 800v, соответственно рабочее напряжение конденсатора С11 630 В, защитные варисторы R14 и R15 типа 20D241. Для установки симистора нужно использовать радиатор. Конструкция элемента безопасна и не имеет соединения с теплоотводом.

На радиатор для контроля температуры желательно установить термостат с температурой размыкания контактов 60-80°С. Аналогичным контролем можно оснастить силовой трансформатор.

Аварийный сигнал от термостатов можно подключить к контроллеру для остановки работы при превышении температуры выше допустимой, с отображением соответствующего сигнала на индикаторах.

Для споттеров большой мощности можно рекомендовать другой вариант схемы управления тиристорами. В ней применяются тиристоры типа 70TPS12, для управления которыми использованы оптроны МОС3052. Тиристоры этого типа имеют электрическое соединение с теплоотводами и должны устанавливаться на раздельные радиаторы или с диэлектрическими прокладками.

Схема управления с блоком индикаторов точечной сварки споттер

Рисунок 2. Схема блока управления для споттера.

Внешний вид платы блока управления с контроллером показан на фото 2.

На фотографии показан внешний вид блока индикаторов с кнопками управления без декоративной панели. Панель индикаторов с кнопками и установленной декоративной панелью показана на другом фото 3.

Схема управления имеет минимум вспомогательных элементов. Управление всеми процессами осуществляется микроконтроллером типа AtMega 16, установленном в исполнении DIP. Элемент производителя фирмы Atmel имеет невысокую стоимость и большое количество выводов.

Устройство контролера позволяет использовать входные и выходные сигналы на любые ножки микросхемы, поэтому плата получается максимально упрощенной. Кроме возможностей конфигурации, контролер оснащен оперативной и энергонезависимой памятью большой емкости и др.

В схеме управления споттером его возможности использованы примерно на 20 %.

Краткое описание работы точечной сварки споттер

Принципиальная схема блока управления показана на рисунке (рис.2). При поступлении напряжения питания загружаются сохраненные в энергонезависимой памяти данные для первой кнопки.

На индикаторе отображается выдаваемая контролером информация. Параллельно с выводом информации выполняется контроль состояния кнопок, при обнаружении сработавшей кнопки запускается соответствующая подпрограмма.

Информация на табло обновляется в связи с новым запросом.

При каждом срабатывании контактов кнопок раздается звуковой сигнал, его отсутствие означает неисправность или зависание контроллера.

Фото 3. Панель индикаторов споттера.

При помощи кнопок можно выбрать необходимый режим работы, установить нужные параметры импульса. Подобранный режим можно сохранить в памяти для последующего использования.

В режиме «Работа» контроллер работает следующим образом:

  1. Индикаторы отключаются, контроллер контролирует уровень напряжения на контакте AIN1.
  2. При снижении напряжения до нулевого уровня запускается счетчик с установленным периодом паузы.
  3. По окончании отсчета выдается команда на микросхему управления тиристором (симистором). Процесс повторяется на каждом периоде сетевого напряжения для использования только положительной половины периода. Это усовершенствование позволяет избежать режима магнитного насыщения железа.

Контроль сетевого напряжения происходит по цепочке от блока питания, через контакт разъема Х-1 на контакт контроллера SIN. Элементы VR2 и Q2 корректируют форму сигнала. Напряжение на открытие симистора подается на разъем Х3, контакты 1 и 2.

Состав схемы управления точечной сварки споттер

Дополнительно с контроллером использованы разгружающие ключи IC2 для предохранения микросхемы процессора от перегрузок. Микросхема IC3 применена из-за недостаточного количества выводов на процессоре.

Используется в качестве регистра памяти с параллельным выходом и последовательным входом. В зависимости от полученного кода включается определенный светодиод. Цифровые индикаторы имеют семь сегментов, подключенных к общему катоду. В общую схему соединяются дорожками платы.

В качестве LED5-10 можно использовать любые светодиоды, подобрав необходимый цвет.

Устройство для звука должно иметь собственный генератор с рабочим напряжением 5 В. Пассивные элементы можно применять любых марок с точностью номиналов до 20 %.

Для программирования контролера необходимо установить соответствующий разъем, подключенный к выводам микропроцессора: MOSI, MISO, SCK, Reset, Gnd.

Прошивку можно выполнять на программаторе или на компьютере с установленной специальной программой. Существует несколько вариантов различных программ, помогающих выполнять прошивку процессоров различного назначения.

Основное внимание в них уделено работе устройства как аппарата точечной сварки. Споттер в переводе означает “точка”.

Как сделать точечную сварку или споттер своими руками из сварочного аппарата, аккумулятора или микроволновки для кузовного ремонта: схема и видео

Блок управления точечной сваркой на микроконтроллере

Самодельный споттер используют в отношении кузовных работ автомобилей. Делают это тогда, когда по каким-то причинам с внутренней стороны выровнять поверхность детали нет возможности.

Можно локально нагревать металл при помощи указанного инструмента, если на кузовной области есть небольшие повреждения.

Важно разобраться, как сделать споттер своими руками, чтобы получить качественное и функциональное изделие.

Процесс сварки выглядит так. На место повреждённого металла закрепляется крепёж. К нему подсоединяется устройство и при помощи вспомогательных приспособлений либо своими руками вытягивают вмятины.

Инструмент для ремонта кузова дает возможность быстро и качественно восстанавливать автомобиль без покраски поврежденного участка. Споттер хорош тем, что при его эксплуатации удается держать под контролем функционирование каждой детали.

Это объясняется тем, что вероятность перегрева и разрыва проводов довольно велика.

Принцип работы споттера

Аппарат состоит из двух основных частей – блока управления и пистолета. Действие рихтовочного инструмента основано на методе точечной сварки. Споттер для рихтовки авто работает при помощи следующих аксессуаров:

  • Обратный молоток – накручивается на пистолет. Наконечник молотка с насадкой-звездочкой или иглой для точечной сварки напрямую приваривается к поврежденной поверхности и за него вытягивается вмятина. Используя специальный электрод, можно сначала приварить шайбы, а затем поочередно вставлять в них крючок обратного молотка и выпрямлять деталь. На приваривание шайб уходят доли секунды
  • Пуллер для споттера – используется для экспресс-вытяжки. Он плавно выравнивает поверхности небольших повреждений. Работает при помощи рычагов. Для ликвидации крупных вмятин используется выправочное устройство ручного типа
  • Осадка металла – после правки детали на ней остаются пузыри. Чтобы их убрать, в пистолет вставляется электрод, а затем им точечно прогреваются неровности.

“Для осадки лучше использовать медный электрод – он не перегревает металл”

Кузов в месте крепления наконечника обратного молотка или шайбы обязательно зачищается до металла. Таким же образом подготавливает кусочек детали, чтобы закрепить на нем массу (заземлить).

Провод крепится при помощи зажима непосредственно на дверь или через магнитный держатель, если нет возможности зацепиться.

Когда изготавливается споттер своими руками, то к поверхности приваривается болт и на него вешается масса.

Свойства конструкции агрегата

Приспособление состоит из таких компонентов, как коробка, пистолет, кабель, электрод.

Коробка содержит всю систему аппарата, которая необходима для сварки. Чтобы четко и быстро проводить кузовные работы, надо придерживаться порядка и технологии процесса.

Ели поверхность подверглась деформации, надо очистить ее от любого покрытия. Это может быть ржавчина, краска или лак.

Данный этап очень важен, так как качество соединения металлов напрямую влияет на итог всего процесса. На поверхность, которая подверглась корректировке, присоединяют контакты.

На очищенную зону повреждённой области приваривают крепёж, к которому и подсоединяется рассматриваемое устройство.

Вслед за этим захватывается устройство пистолетом, после чего вмятина вытягивается. Для выравнивания прибегают к использованию молотка, гидроцилиндров и других приспособлений. Обращают внимание на толщину металла.

Здесь следует понять, какое оборудование даст возможность производить рихтовку машины, чтобы не нанести ей вреда. Обратный молоток не используется в сочетании с алюминием. К тому же не каждый агрегат может справиться с оцинкованным кузовом.

Когда рихтовка кузова закончена, скручивают приваренную деталь. Место контакта зачищают шлифовальной машинкой.

Возможности самодельного споттера

Самодельный споттер для рихтовки обладает большинством функций профессионального аппарата. С его помощью:

  • создается точечная сварка для соединения деталей;
  • прогреваются рабочие элементы;
  • зачищаются поврежденные зоны деталей;
  • захватываются крепежные элементы;
  • вытягиваются вмятины кузова автомобиля;
  • устраняются крепежные элементы;
  • зачищается рабочая поверхность.

Использование аппарата не требует профессиональных навыков для использования, поскольку схема управления споттером проста. Прибор работает в постоянном и кратковременном режиме. При помощи дополнительных элементов обеспечивается принудительная система охлаждения.

Ключевая деталь споттера

Сварочный пистолет — это основная деталь устройства. Для непрерывной работы используют устройство фабричного изготовления. Можно сделать его на основе пистолета из строительного клея своими руками.

Альтернативным способом будет применение деталей из полуавтоматической сварки. Из текстолита вырезают одинаковые части с показателями длины от 12 до 14 мм. Их должно быть 2. В них устанавливают кронштейн, применяемый в качестве крепления электрода для сварки.

При желании можно смонтировать лампочку для подсветки, как и переключатель импульса.

Кронштейн можно сделать из меди. У него может быть сечение — прямоугольное или квадратное. В качестве электрода для сварки используют медный прут с толщиной от 8 до 10 мм.

Пистолет должен иметь такую конструкцию, которая позволяла бы поменять электрод без разборки.

Чтобы подключить пистолет к устройству, используют комбинацию из сварочного кабеля с необходимым показателем сечения и 5-жильным контрольным кабелем. Подключение последнего осуществляется в соответствии со схемой.

На переключатель проводят три жилы. Ещё две перемещаются на подсвечивающую лампочку и двигатель. Сварочный кабель необходимо зачистить и припаять в специальное отверстие в кронштейне.

Блок управления точечной сваркой на микроконтроллере

Блок управления точечной сваркой на микроконтроллере

Хочу представить вам свою новую разработку. Это контроллер профессионального назначения для полуавтомата, далее (ПА).

Данное устройство реализовано на микроконтроллере Atmega16, работает он на тактовой частоте 4 МГц от внешнего кварцевого резонатора.

Можно конечно затактировать и от встроенного генератора на 4 МГц, но данный способ имеет существенные недостатки:1) «Уплывание» частоты при изменении температуры окружающей среды.2) Возможный сбой программы при внешних помехах.Второе случается крайне редко на практике.

А при хорошем проектировании печатной платы, вовсе не случается.Первый недостаток очень серьезный из-за того, что мы используем фазоимпульсный метод регулирования сварочного тока.

От «уплывания» тактовой частоты у нас будут уплывать установленные значения тока в ту или иную сторону.

Данное устройство имеет следующие возможности: 1) Плавную регулировку тока с запоминанием значения 2) Плавную регулировку скорости подачи проволоки с запоминанием значения 3) Эконом режим. Режим экономии газа. 4) Настройка режима работы пусковой кнопки на рукаве.   а) нормальный режим работы.   б) триггерный режим работы   в) таймерный режим работы.

   г) импульсный режим работы.В нормальном режиме, мы нажали кнопку — варим, отжали — не варим.В триггерном режиме мы нажали и отжали кнопку — варим, повторно нажали и отжали — не варимВ таймерном режиме мы варим как и в обычном режиме, только режим сварки отключается автоматически хоть и нажата кнопка на рукаве по истечению времени.

Для продолжения работы необходимо отжать кнопку и повторно нажать.В импульсном режиме мы варим как бы рывками. В меню задается как пауза, так и импульс сварки, в довольно широких пределах.  Этот режим идеально подходит для работ, где необходима точечная сварка.

 5) Настройка минимального предела тока 6) Настройка максимального предела тока 7) Настройка минимального предела скорости проволоки  Настройка максимального предела скорости проволоки 9) Настройка предварительной подачи газа (ПРЕД) 10) Настройка последующей подачи газа (ПОС) 11) Настройка количества реле для грубого регулирования тока путем отводов первичной обмотки. Минимум 1шт. максимум 10шт. реле.

 12) Грубая регулировка тока переключением обмоток трансформатора с меню с запоминанием уровня тока.

В общем с возможностями разобрались. Теперь расскажу немного теории.

Принцип регулирования тока заключается в подаче управляющего импульса на тиристоры после перехода через ноль сетевого напряжения.

Чем выше установленная выходная мощность в меню, тем раньше будет подан импульс управления на тиристоры после перехода через ноль.

Стандартную схему диодно-тиристорного моста можно посмотреть в моей предыдущей статье
Принцип регулирования скорости подачи проволоки значительно проще, чем регулирование тока. Применен метод широтно-импульсной модуляции далее (ШИМ).

Навигация по меню и настройка1)   Регулировка тока + регулировка проволоки2)   Эко режим3)   Режим переключения обмоток4)   Настройка режима работы «живой кнопки»5)   Настройка минимального значения тока6)   Настройка максимального значения тока7)   Настройка минимального значения подачи проволоки8)   Настройка максимального значения подачи проволоки9)   Настройка пред. газа10)   Настройка пос. газа11)   Настройка количества реле обмоток12)   Настройка таймерного режима (установка времени работы при нажатой кнопке)Одно значение = 75мс. То есть значение 10 = 750мс.13)   Настройка импульсного режима работыЗначение 10d это у нас промежуток когда нет токаЗначение 10p это у нас промежуток когда есть токНастраивается парами кнопок +/- и + prov /- provКнопкой MENU мы перемещаемся по менюКнопкой RETURN выходим в первое (главное) меню

Кнопками +/- и +prov/-prov мы устанавливаем значение.

Для того, чтобы заработало устройство его необходимо правильно собрать и прошить контроллер (МК).
Для прошивки МК нам понадобится программатор. Схемы программаторов можно посмотреть здесь.

Фьюзы при прошивке нужно выставить так: CKSEL 3..0 0b1111

К статье прилагаю файл [svarka4.rar] симуляции для протеус, несколько прошивок (одна с пониженной частотой ШИМ, вторая с повышенной частотой ШИМ).

Имеется коммерческая версия прошивки1) изменен алгоритм меню.2) улучшено быстродействие.3) добавлена формула расчета скорости подачи проволоки от значения тока (отключаемая по желанию).

4) добавлено несколько режимов экономии газа.

Обновления 28.01.2014:— новая версия прошивки V1.1;

— печатная плата в DIP Trace.  Ожух Владимир из Мишевоград-Волынский, Украина. Плата протестирована им-же.

В новой версии прошивки исправлено:— подача проволоки теперь работает на максимуме;- вывод торможения имеет нормальную нагрузочную способность.

Внимание! Это free (бесплатная) версия. Не имеет ограничений! Отличается от 3.0 (Полной версии) — наличием формулы и доработанным и улучшенным меню.

Список радиоэлементов

Скачать список элементов (PDF)

Прикрепленные файлы:

  • svarka4.rar (50 Кб)
  • svarka_2014.dip (226 Кб)
  • V1_1_22_01_14_prof_PA.rar (7 Кб)

Мостовой сварочный инвертор с микроконтроллерным управлением

Схема блока управления полномостовымсварочным инвертором
Блок управленияпостроен на основе распространенного ШИМ-контроллера TL494 сзадействованием одного канала регулирования. Этот канал стабилизируетток в дуге.

Задание тока формирует микроконтроллер с помощью модуляCCP1 в режиме ШИМ на частоте примерно 75 кГц. Заполнение ШИМ будетопределять напряжение на конденсаторе C1. Величина этого напряженияопределяет величину сварочного тока.

Настройка инвертора

    Силовая часть пока обесточена.Предварительно проверенный блок питания подключаем к блоку управления ивключаем его в сеть. На индикаторе загорятся все восьмёрки с точкой вмладшем разряде. Включаем осциллограф в провода Out1 и Out2.Контролируем наличие двухполярных импульсов частотой 40-50 кГц сполочкой мёртвого времени не менее 1,5 мкс между ними.

CapWelder — точечная сварка на ионисторах своими руками

Блок управления точечной сваркой на микроконтроллере

updated 21.07.20

схема, 3d модель, фото

Точечная сварка очень полезная штука. Она используется для быстрого соединения аккумуляторов типа 18650 в сборки. На моем канале есть несколько видео о моих экспериментах по созданию аппарата для точечной сварки на суперконденсаторах.

Я переделал на литий шуруповерт, электровелосипед, собрал хранилище для солнечной энергии своей СЭС и даже прокачал электрическую газонокосилку!

Функциональная схема точечной сварки

Для точечной сварки нужен импульс тока в несколько сотен ампер. Часто в качестве источника тока используют трансформатор от микроволновки. Я не хотел связываться с трансформаторами из-за их гигантского размера и веса, а в качестве источника возьму пару ионисторов емкостью 3000 Фарад.

Мощность сварки выбирается в зависимости от толщины никелированной ленты. Для соединения аккумуляторов используют лены толщиной 0.1 мм — 0.3 мм.

Схема точечной сварки на ионисторах и мосфетах.

Одновибратор на таймере 555 по нажатию на зеленую кнопку формирует одиночный импульс. Переменный резистор на 10к позволяет регулировать длительность импульса от 5 до 30 мс. Импульс с большей длительностью вызывает локальный перегрев места сварки и ухудшает качество соединения.

Сформированный импульс поступает на драйвер силовых транзисторов TC4420, который может резко открыть или закрыть сборку из силовых ключей IRF1324.

Вольт-амперная характеристика транзистора IRF1324

По вольт-амперной характеристике понятно, что при напряжении 5 В один транзистор может выдать ток более 100 А. Сборка из 4-х мосфетов выдаст токи примерно в 500 А. А при 7.5В более 1000 А

Для более резкого срабатывания силовых ключей на затворах желательно формировать напряжение 7 — 12В. Это сокращает переходные процессы и уменьшает нагрев транзисторов.

Для повышения напряжения с 5 В до 12 В возьму готовый DC-DC бустер. На выходе бустера обязательно нужен конденсатор на 470 — 1000 мкФ. Именно он питает схему в момент сварки, а диод, расположенный в бустере не дает конденсатору быстро разрядится при замыкании сварочных электродов.

Блок питания на 5 В 3 А подзаряжает ионисторы в перерывах между сварочными импульсами.

Прототип платы, собранный на макетной плате.

Электрическая схема макет печатной платы

Два синих светодиода, соединенные последовательно, начинают светится как раз при напряжении в 5 В. Из них получился индикатор готовности аккумуляторов. Я добавил желтый индикатор контакта электродов. Сделал схему и развел плату в редакторе EasyEDA

Схема на SMD компонентах

Корпус и механическая сборка

В собранном виде получился вполне работоспособный аппарат для точечной сварки. Я установил плату управления на сборку из ионисторов.

Заводская плата и смонтированные SMD компоненты

Чтобы скрыть потроха — замоделил крышку корпуса во Fusion360 и напечатал её на 3d принтере. Новая версия немного отличается, т.к. сделана под заводскую плату.

Собранный споттер на 2-х ионисторах.

Один ионистор на 3000 Ф обошелся примерно 1900 руб. Весь споттер стоит значительно дешевле даже китайских сварочников и справляется с лентой 0.1 — 0.12 мм.

Вариант точечной сварки на 3-х ионисторах.

Плата достаточно универсальна. Ее можно использовать для более мощной сварки на 3-х ионисторах напряжением 7.5В.

В такой сборке DC-DC бустер можно заменить на диод Шоттки, а вместо одного из 2-х синих светодиодов использовать сабилитрон на 5.1 В. Естественно для зарядки понадобиться блок питания на 7.5В 3А.

Такой споттер справляется с лентой до 0.3 мм

Функционал споттера достаточен для домашней мастерской. Однако, можно добавить отложенный автозапуск при касании электродами ленты. Также можно добавить дисплей для индикации параметров и выборов режимов работы. Еще можно сделать двойной импульс сварки.

Если вам понравился проект — поддержите автора! Это мотивирует на создание полезных самоделок!

Также вы можете заказ комплект для самостоятельной сборки CapWelder со всеми необходимыми материалами, кроме ионисторов и блока питания. Их можно заказать самостоятельно по ссылке.

Заказать комплект за 1900 руб

или заказать готовую плату на SMD компонентах

Заказать плату SMD за 1490 руб

В посылке с комплектом будут все компоненты, в т.ч. печатная плата, корпус и все элементы кроме ИОНИСТОРОВ и блока питания. Вырученные средства пойдут на на закупку материалов для новых проектов, оборудования для съемки, содержание сайта и доменного имени.

Необходимые метериалы

Сделай своими руками
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: