Чем отличается металл от стали

Разница между металлом и сталью

Чем отличается металл от стали

Металлы – это вещества, обладающие уникальными свойствами, такими как отличная электрическая и теплопроводность, отражательная способность света, пластичность и пластичность. Иногда термин металл исп

Металлы – это вещества, обладающие уникальными свойствами, такими как отличная электрическая и теплопроводность, отражательная способность света, пластичность и пластичность. Иногда термин металл используется для обозначения химических элементов в группе 1, группе 2 и блоке d в периодической таблице.

Это также общий термин, используемый для обозначения металла или металлических сплавов. Сталь – это металлический сплав, состоящий из железа, углерода и некоторых других химических компонентов. Существуют различные виды стали, изготовленные для получения желаемых свойств.

Основное различие между металлом и сталью заключается в том, что термин металл может использоваться для обозначения химического элемента или вещества с характерными металлическими свойствами, тогда как термин сталь используется для обозначения металлического сплава, состоящего из железа, углерода и некоторых других элементов.

Ключевые области покрыты

1. Что такое металл
      – определение, свойства металла
2. Что такое сталь
      – определение, разные типы
3. В чем разница между металлом и сталью
      – Сравнение основных различий

Ключевые слова: коррозия, пластичность, электропроводность, ковкость, металл, металлический сплав, отражательная способность света, сталь

Что такое металл

Термин металл можно использовать для обозначения химического элемента или вещества с характерными металлическими свойствами. В общем, мы называем вещества с высокой прочностью, высокой электрической и теплопроводностью и высокой пластичностью металла.

Элементы группы 1 и группы 2 в периодической таблице элементов известны как металлы. Элементы группы 1 называются щелочными металлами, а элементы группы 2 – известными щелочноземельными металлами. Эти элементы могут образовывать катионы, удаляя валентные электроны. Кроме того, элементы d-блока также рассматриваются как металлы.

Вещества, изготовленные из этих элементов, известны как металлы. Эти металлы обладают уникальными свойствами, известными как металлические свойства. Некоторые основные свойства металлов перечислены ниже.

  • Металлический внешний вид (блеск благодаря высокой отражающей способности света)
  • Очень высокие температуры плавления и кипения
  • Высокая плотность
  • Отличная тепловая и электрическая проводимость
  • тягучесть
  • тягучесть

Рисунок 1: Золото это металл

Металлы и их применение

Некоторые общие полезные металлы приведены в следующей таблице с некоторыми их применениями.

металлПриложения
Железо (Fe)Цель строительства
Золото (Au)Ювелирные изделия
Медь (Cu)Провода для электропроводности, статуи, монеты
Магний (Mg)Автокресла, ноутбуки, камеры и др.

Что такое сталь

Сталь представляет собой металлический сплав, состоящий из железа, углерода и нескольких других элементов, таких как марганец, вольфрам, фосфор и сера. Процентное содержание углерода в стали может варьироваться. Сталь можно классифицировать в зависимости от ее химического состава. Существует четыре основных категории:

  1. Углеродистая сталь
  2. Легированная сталь
  3. Нержавеющая сталь
  4. Инструментальная сталь

Рисунок 2: Сталь используется для строительных целей

В зависимости от количества присутствующего углерода углеродистую сталь можно разделить на несколько групп, таких как:

  • Мягкая сталь – углерод до 0,3%
  • высокоуглеродистая сталь – содержание углерода 0,3-0,6%
  • низкоуглеродистая сталь – более 0,6% углерода

Легированная сталь содержит легирующие элементы, такие как никель, титан, алюминий, хром и т. Д. В различных процентах. Нержавеющая сталь – это особый вид стали, который устойчив к коррозии благодаря присутствию хрома примерно на 10-20%. Инструментальные стали сделаны, чтобы противостоять высоким температурам и условиям давления.

Сталь твердая, очень прочная и пластичная. Но он не устойчив к коррозии (за исключением нержавеющей стали, которая изготавливается путем смешивания хрома с железом, что придает свойства коррозионной стойкости). Сталь легко подвергается коррозии при воздействии влажной среды. Поэтому происходит ржавчина.

Определение

Металл: Металл относится к химическому элементу или веществу с характерными металлическими свойствами.

Сталь: Сталь представляет собой металлический сплав, состоящий из железа, углерода и нескольких других элементов, таких как марганец, вольфрам, фосфор и сера.

Природа

Металл: Металл – это либо химическое вещество, либо химический элемент.

Сталь: Сталь – это металлический сплав.

коррозия

Металл: Все металлы могут подвергаться коррозии.

Сталь: Сталь может корродировать (кроме нержавеющей стали).

Вес

Металл: Некоторые металлы имеют малый вес (например, магний), но некоторые имеют большой вес (например, железо).

Сталь: Сталь – это тяжелый металл.

Температура плавления

Металл: Некоторые металлы имеют более низкие температуры плавления, чем сталь.

Сталь: Сталь имеет достаточно высокую температуру плавления.

Заключение

Металлы и металлические сплавы являются очень полезными веществами в строительстве. Сталь – это металлический сплав.

Основное различие между металлом и сталью заключается в том, что термин металл может использоваться для обозначения химического элемента или вещества с характерными металлическими свойствами, тогда как термин сталь используется для обозначения металлического сплава, состоящего из железа, углерода и некоторых других элементов.

Рекомендации:

1. Хельменстин, Энн Мари. «Какие свойства делают металлы уникальными?» ThoughtCo,

Чем отличается сталь от металла?

Чем отличается металл от стали

Продукция черной металлургии широко используется во многих отраслях народного хозяйства, а черный металл всегда востребован в строительстве и машиностроении. Металлургия уже давно успешно развивается, благодаря своему высокому техническому потенциалу. Наиболее часто применяются в производстве и в быту чугунные и стальные изделия.

Чугун и сталь оба относятся к группе черных металлов, эти материалы представляют собой уникальные по своим свойствам сплавы железа с углеродом. В чем отличия стали и чугуна, их главные свойства и характеристики?

Сталь и ее основные характеристики

Сталь представляет собой деформированный сплав железа с углеродом, которого всегда максимум до 2%, а также другие элементы.

Углерод является важным компонентом, поскольку придает прочности сплавам железа, а также твердость, за счет этого снижается мягкость и пластичность.

В сплав часто добавляются легирующие элементы, что в итоге дает легированную и высоколегированную сталь, когда в составе не менее 45% железа и не более 2% углерода, остальные 53% составляют добавки.

Сталь является важнейшим материалом во многих отраслях, ее применяют в строительстве и по мере роста технико-экономического уровня страны, растут и масштабы производства стали. В давние времена мастера для получения литой стали применяли тигельную плавку и такой процесс был малопроизводительным и трудоемким, но сталь отличалась высокими качествами.

Со временем процессы получения стали менялись, на смену тигельному пришли бессемеровский и мартеновский метод получения стали, что дало возможность наладить массовое производство литой стали.

Затем стали выплавлять сталь в электрических печах, после чего был внедрен кислородно-конверторный процесс, он позволил получать особо чистый металл.

От количества и видов связующих компонентов сталь может быть:

  • Низколегированной
  • Среднелегированной
  • Высоколегированной

В зависимости от содержания углерода она бывает:

  • Низкоуглеродистой
  • Среднеуглеродистой
  • Высокоуглеродистой.

В состав металла часто входят неметаллические соединения — оксиды, фосфиды, сульфиды, их содержание отличается на качестве стали, существует определенная классификация качества.

Плотность стали составляет 7700-7900 кг/м3, а общие характеристики стали складываются из таких показателей, как — прочность, твердость, износостойкость и пригодность для обработки различного вида.

По сравнению с чугуном сталь обладает большей пластичностью, прочностью и твердостью.

Благодаря пластичности она легко поддается обработке, сталь отличается более высокой теплопроводностью, а ее качество повышается за счет закаливания.

Такие элементы, как никель, хром и молибден являются легирующими компонентами, каждый из них придает стали свои характеристики.

Благодаря хрому сталь становится более прочной и твердой, повышается ее износостойкость. Никель также придает прочности, а также вязкости и твердости, повышает ее антикоррозийные свойства и прокаливаемость.

Кремний снижает вязкость, а марганец улучшает качества свариваемости и прокаливания.

Все существующие виды стали имеют температуру плавления от 1450 до 1520оС и представляют собой прочные износостойкие и стойкие к деформации сплавы металла.

Чугун и его основные характеристики

Основу производства чугуна также составляет железо и углерод, но в отличие от стали углерода в нем больше, а также других примесей в виде легирующих металлов. Он отличается хрупкостью и разрушается без видимой деформации. Углерод здесь выступает графитом или цементитом и за счет содержания других элементов чугун делится на следующие разновидности:

  • Белый — где лидирует в большинстве цементит, этот материал на изломе имеет белый цвет. Данный компонент отличается хрупкостью и одновременно твердостью. Он легок в обработке, что придает ковкость чугуну.
  • Серый — в этой разновидности большую долю составляет графит, за счет чего чугун получается пластичным. Готовый чугун имеет небольшую температуру плавления, отличается мягкостью, его легче резать.
  • Ковкий — достигается методом обжига белого чугуна, его томят в специальных нагревательных печах при температуре в 950-1000оС. Присущая белому чугуну твердость и хрупкость снижаются, он не куется, а только становится более пластичным.
  • Высокопрочный сплав чугуна — в нем содержится шаровидный графит, который образуется в ходе кристаллизации.

Температура плавления чугуна зависит от содержания в нем углерода, чем его больше в составе сплава, тем меньше температура, а также повышается его текучесть при нагреве. Это делает металл непластичными жидкотекучим, а также хрупким и трудно поддающимся обработке. Его температура плавления составляет от 1160 до 1250оС.

Антикоррозийные свойства у чугуна выше, поскольку он подвергается сухой ржавчине в процессе использования, это называется химическая коррозия. Влажная коррозия также воздействует на чугун медленней, чем на сталь. Эти качества привели к тому, что было совершено открытие в металлургии — начали выплавлять сталь с высоким содержанием хрома. Отсюда и появилась нержавеющая сталь.

Делаем вывод

Исходя их многочисленных характеристик, можно сказать следующее о чугуне и стали, в чем их отличие:

  • Сталь является более прочной и твердой, чем чугун.
  • Сталь имеет более высокую температуру плавления, она тяжелей.
  • Более низкий процент содержания углерода в стали делает ее легкой в обработке, ее проще резать, ковать и варить.
  • По этой причине изделия из чугуна можно отлить, а стальные сварить или сделать кованными.
  • Стальные изделия менее пористые, чем чугунные, поэтому они обладают большей теплопроводностью.
  • По цвету они также отличаются, сталь светлая и блестит, а чугун более темный с матовой поверхностью.
  • Стоимость на сталь всегда выше чугунных материалов.

Можно сделать вывод, что сталь и чугун объединяет содержание в них углерода и железа, но их характеристики отличаются и каждый из сплавов имеет свои особенности.

  • Николай Иванович Матвеев
  • Распечатать

Чугун от стали чем отличается визуально?

Малоосведомлённый человек считает, что основным конструкционным материалом современности является железо. Разбирающийся знает, что под словом «железо» имеются в виду железоуглеродистые сплавы – сталь и чугун.

Казалось бы, два абсолютно разных материала и их очень легко отличить. Однако, учитывая широкий ассортимент их видов и марок, тонкую грань различия в химическом составе некоторых из них определить трудно.

Важно обладать дополнительными навыками для того, чтобы знать ответ на вопрос: чугун от стали чем отличается?

Механические свойства аустенитных сталей

В момент кристаллизации металл проходит 1 фазу, и после этого кристаллическая решетка остается неизменной даже при воздействии сверхнизких температур, например, -200 градусов. Сплав имеет в основу железо и обязательно подвергается легированию.

Наиболее часто используются такие легирующие добавки как никель и хром, в меньшей концентрации добавляются прочие примеси.

В зависимости от того, насколько велики пропорции химических металлических и неметаллических веществ, меняются и характеристики – химические, физические, технологические, появляются особые свойства.

В процессе легирования используют добавки:

  • Ферритизаторы. Они стабилизируют структуру аустенита, а также после охлаждения увеличивают долю феррита. Также они предопределяют образование ОЦК-решетки. К ним относятся следующие элементы: ванадий, вольфрам, титан, кремний, ниобий, молибден.
  • Аустенизаторы. Они расширяют область аустенита. Интересно, что есть даже термин аустенизация – это специальный нагрев, как во время закалки, с последующим кратковременным выдерживанием и охлаждением.

Не все марки класса аустенитных сталей обладают одинаковыми свойствами. Ведь кроме метода термообработки, важен еще и состав. Поэтому как и во всех других случаях при рассмотрении структурных разновидностей сплавов, следует учитывать входящие компоненты и пропорции. Мы отметим, какие свойства характерны некоторым из аустенитов:

  • Нержавеющие, устойчивые к коррозии. Производство этих популярных сталей регламентируется нормативным документом ГОСТ 5632-2014. Согласно ему, в таких составах находится 18% хрома, 30% никеля и 0,25% углерода. А еще могут быть различные примеси (как полезные, так и вредные), например, кремний, марганец и молибден. Коррозионная невосприимчивость настолько ценится, что применяется повсеместно – от изготовления изделий бытового назначения до сложных узлов в машиностроении. Вещества вступают в реакцию с кислородом и образуют на поверхности оксидную пленку. Именно она является защитной и не нарушается даже при сильных температурных перепадах. Невосприимчивость к нагреву объясняется достаточно низкой углеродистостью.
  • Аустенитные жаропрочные стали. У них очень высокая предельная точка нагрева, поэтому их можно использовать в сложных подвижных узлах, а также при непосредственном контакте с паром, огнем и иными раскаленными предметами. Температура вплоть до 1100 градусов им абсолютно не страшна, она не сделает существенных изменений в глубинной структуре материала. Это объясняется тем, что сплав обладает ГЦК-решеткой и такими добавками как бор, ниобий, молибден, ванадий и вольфрам. Перечисленные примеси и увеличивают устойчивость к жару. Приведем пример использования – турбины самолетов, все элементы двигателя внутреннего сгорания автомобиля и пр.
  • Хладостойкие. Чтобы добиться такого эффекта, следует изготовить высоколегированную сталь с высокой концентрацией никеля (25%) и хрома (19%). Интересной особенностью данных изделий является то, что высокая прочность, пластичность поддерживаются только на морозе, в то время как при комнатной температуре характеристики могут поменяться в негативную сторону.

Отметим, что состав аустенитной стали является дорогостоящим, поскольку в него добавлено большое количество легирующих компонентов. Поэтому далеко не все производственные сферы могут похвастаться наличием деталей из аустенита. Основными примесями являются хром и никель, а они дорого стоят.

Данному классу сплавов характерны различные контролируемые структурные превращения, так можно получить:

  • Феррит, если нагреть состав до сверхвысоких температур.
  • Межкристаллическая коррозия. Этого стараются не допускать, поскольку данный процесс приводит ко внутренним разрушениям структуры, глубоких слоев и поверхности. Дело в том, что когда железо нагревается более 900 градусов, то появляются избыточные фазы карбидов, которые, в свою очередь, уже влияют на коррозийные преобразования.
  • Перлит. Это часто используемая структура металла, которая представлена в виде небольших зерен и пластин. Его образование неизбежно при медленном, постепенном охлаждении заготовки непосредственно вместе с печью до температуры в 730 градусов. Именно на этом рубеже происходят изменения в кристаллической решетке из-за эвтектоидного распада. Также его называют перлитным превращением. В ходе данного процесса одновременно растет феррит и цементит, имеющие пластинчатую форму.
  • Мартенсит. Это еще один тип структуры, представленный пластинами в виде иголок или тонких реек. Он образуется, когда резко снижают температуру изделия, например, сразу из печи и в холодную воду или в масло.

Таким образом, любые превращения являются предусмотренными заранее и контролируемыми. Обычно решающим фактором процедуры является время выдержки и температура нагрева и охлаждения. Это определяется содержанием углерода и прочих легирующих добавок. Те сплавы, которые имеют наименьшее количество примесей, кристаллизуются быстрее.

Методы получения аустенитных углеродистых сталей

Весь первоначальный процесс можно описать так: чтобы получить аустенит, необходимо чтобы в первоначальной структуре сплавов начали появляться и расти зерна. Сперва зернистость меняется у поверхности при фазах появления карбидов, со временем полностью толща заготовки меняет свою структуру.

Второй способ изготовления аустенита – это нагрев до 900 градусов перлитной модификации железа (после эвтектоидного распада). Такой сплав состоит частично из цементита, на вторую часть из феррита.

Чтобы такое превращение произошло, необходима минимальная углеродистость стали – не меньше, чем 0,66% содержание вещества.

После того как повышается температура более чем на 900 градусов, ферритная структура перевоплощается в аустенитную, а цементитная полностью растворяется. Получается прекрасного качества нержавейка.

Есть еще один вариант – с титановой смесью. В таких случаях берется металлическая заготовка, она помещается в индукционную печь, в которой поддерживается вакуум. В ней сперва достигается высокий жар, а затем он долгий период поддерживается.

За это время происходит диазотирование, то есть удаление из стального расплава атомов азота. Временной промежуток определяется индивидуально в зависимости от массы заготовки.

Затем постепенно добавляются титан и другие металлические и неметаллические примеси, которые образуют нитриды в реакции с железом.

Но основной способ получения аустенитной стали базируется на создании высоколегированного хромоникелевого сплава. Легировать изделие можно с помощью добавления хрома и никеля. После того как вещества добавлены в тугой раствор, нужно продолжительное время поддерживать высокую температуру, это дает:

  • устойчивость к коррозии;
  • прочность;
  • жаростойкость;
  • увеличенное выделение карбидов.

А если добавить молибден и фосфор, то можно добиться повышенной вязкости и усталостной прочности.

Химические элементы и их влияние на аустенит

Как и любая легированная сталь, в своей основе данная может иметь ряд легирующих добавок. Давайте посмотрим, как их содержание в расплаве влияет на основные качества металла:

  • Хром. Его высокая концентрация, превышающая 13% (но не более 19%), способствует созданию оксидной пленки. Она, как известно, препятствует возникновению коррозии. Интересно, что такое действие хрома актуально исключительно при невысоком содержании углерода. Поскольку в обратном случае эти два элемента начинают вступать в реакцию, образуя карбид, который, напротив, ускоряет процесс ржавления.
  • Никель. Еще один постоянно использующийся материал. Его может быть очень много, даже более 50%. Но для того чтобы получить из железа аустенит, достаточно всего 9-12 процентов. Химическое вещество очень положительно воздействует на пластичность – она становится выше. Кроме того, зернистость становится меньше, что хорошо сказывается на прочности.
  • Углерод. Добавляют обычно сотые, десятые доли. Этого достаточно для того, чтобы повысить прочность. Это обусловлено тем, что вещество приводит к образованию карбидов.
  • Азот. Он заменяет углерод, если тот нельзя добавлять в сплав по каким-либо причинам, например, если изделие должно обладать стойкостью к электрическому и химическому воздействию.
  • Бор. Очень хорошо увеличивает пластичность, даже если вещество находится в очень небольшом количестве, а зерно становится меньше.
  • Кремний и марганец. Добавляют для стабилизации аустенита, а также для повышения прочности.
  • Титан и ниобий. Применяют при изготовлении хладостойких сплавов.

Применение аустенитных сталей

Наиболее частое использование:

  • Любые элементы, которые используются при высоких температурах – более 200 градусов (вплоть до 1100). Это могут быть самолетные турбины или различные детали в двигателе. Однако следует внимательно следить за тем, какие химические реакции будут происходить при контакте с топливом, паром и другими агрессивными средами. Иногда возникают трещины. Чтобы предотвратить такую возможность, следует добавить такие примеси как ванадий и ниобий. С ними будет сформирована карбидная фаза, за счет чего происходит упрочнение поверхности.
  • Различные механизмы, которые подвергаются быстрым температурным перепадам. Например, при сварке некоторых материалов.
  • Электрическое оборудование, контакты. Их можно сделать благодаря тому, что аустенит устойчив к электромагнитным волнам.
  • Детали для устройств, работающих в водной среде или в условиях повышенной влажности. Это возможно из-за коррозионной устойчивости. Никель и хром, которые способствуют этой характеристики, также продлевают износ элемента.

Марки аустенитной стали

Все классы можно поделить на три категории:

  • Коррозионностойкие: 08Х18Н10, 12Х18Н10Т, 06Х18Н11 (они содержат хром и никель), 10Х14Г14Н4Т, 07Х21Г7АН5 (с добавкой марганца), 08Х17Н13М2Т, 03Х16Н16ЬЗ (особенность – наличие молибдена), 02Х8Н22С6, 15Х18Н12С4Т10 (в них много кремния).
  • Жаропрочные, например, 08Х16Н9М2, 10Х14Н16Б, 10Х18Н12Т, 10Х14Н14В2БР. Особенностью является наличие в них бора, вольфрама, ниобия, ванадия или молибдена.
  • Хладостойкие: 03Х20Н16АГ6 и 07Х13Н4АГ20, в них очень много хрома и никеля.

Разница между металлом и сталью

Металлы — это вещества, обладающие уникальными свойствами, такими как отличная электрическая и теплопроводность, отражательная способность света, пластичность и пластичность. Иногда термин металл исп

Железо сталь и прочие металлы

Чем отличается металл от стали

Железо и сталь — важнейшие металлы. Сталь получают из железа. Из нее делают множество предметов — от нефтяных вышек до канцелярских скрепок.

Наряду с 80 чистыми металлами людям известно немало сплавов — смесей металлов, качества которых отличаются от качеств чистых металлов. Башенные краны, мосты, другие сооружения делают из стали, содержащей до 0,2% углерода.

Углерод делает сталь прочнее, причем она сохраняет ковкость. Сталь покрывают краской для защиты от коррозии.

Железо и сталь

Железо — это элемент. Его добывают из руды — соединения железа с кислородом. Большая часть добытого железа идет на производство стали, сплава железа с углеродом. Наиболее распространенные железные руды: магнетит(вверху) и гематит(внизу). Железо добывается из руды в доменных печах.

Этот процесс называется плавкой. В печи через слой железной руды, известняка и кокса продувают очень горячий воздух. Кокс представляет собой почти чистый углерод, его получают нагреванием угля.

Углерод кокса соединяется с кислородом, образуя моноксид углерода, который затем «вытягивает» кислород из руды, оставляя чистое железо, и образует диоксид углеро­да. Это пример реакций восстановления. Руда, кокс и известняк поступают в печь. Известняк реагирует с имеющимися в руде примесями, образуя шлак.

Внутри печи раскаленный воздух реагирует с углеродом. Образуется моноксид углерода. При этом температура в печи повышается до 2000°С. Затем оксид углерода реагирует с кислородом руды, восстанавливая ее до железа. Расплавленный шлак вытекает из нижней части печи. Его используют в строительстве дорог.

В конце расплавленное железо выводится наружу. Доменная печь непрерывно функционирует 10 лет, пока её стенки не начнут разрушаться. Высота доменной печи 30 метров, толщина её стен 3 метра.

Железо, получаемое из руды, содержит углерод (около 4%) и другие примеси, в частности серу. Примеси делают желе­зо хрупким, поэтому большую его часть перерабатывают в сталь. При этом из железа удаляют­ся примеси. В стальных скрепках около 0,08% углерода.

Инструменты делают из стали, содержащей хром, ванадий и до 1% углерода. Сталь получают при воздействии на расплавленное железо кислорода. Часто в железо добавляют небольшое количество стального лома. Кислород реагирует с углеродом, содержащимся в железе, при этом образуется моноксид углерода, используемый как топливо.

После очистки в стали остается не более 0.04%   углерода; его количество зависит от марки стали. Сталь получают также путем переплавки стального лома в дуговой электропечи. Для получения стали расплавленное железо и стальной лом заливают в печь, называемую конвертером.

В конвертер под высоким давлением закачивается почти чистый кислород. При его реакции с углеродом получается моноксид углерода (см. так же статью «Химические реакции«). Другой способ получения стали — переплавка стального лома в дуговой электропечи. Мощный электрический ток (см.

статью «Электричество«) расплавляет лом. Расплавленный шлак вытекает из нижней части печи. Его используют в строительстве дорог.

Сплавы

Сплавом называется смесь двух или бо­лее металлов или металла и иного вещества. Так, латунь — это сплав меди и цинка. Латунь прочнее меди, ее легко обрабатывать, и она не подвержена коррозии. В чистых металлах атомы «упакованы» в тесные ряды (рис.

слева). Ряды могут скользить относительно друг друга, что делает металл мягким. При резких сдвигах рядов металл ломается. В сплаве другие атомы укрепляют металл (см. рис. справа), т.к. сдвиг рядов уже невозможен. Поэтому сплавы прочнее чистых металлов.

Многие металлы сами по себе чересчур мягкие, чтобы их можно было использовать, зато их сплавы могут выдерживать большое давление и высокие температу­ры (см. статью «Тепло и температура«). Сталь — это сплав железа и углерода, неметалла.

Добавляя небольшие количества других металлов, можно получить разновидности стали. Ножи и вилки делают из нержавеющей стали — сплава стали, хрома и никеля. Сплавы стали с марганцем чрезвычайно прочны и используются в промышленности для изготовления режущих инструментов.

Алюминиево-магниевые сплавы лег­ки, прочны и не подвержены коррозии. Из них делают велосипеды и самолеты (см. статью «Полет«).

Важнейшие металлы и сплавы

Алюминий. Очень легкий серебристо-белый металл, не подверженный коррозии. Его получают из бокситов путем электролиза. Из алюминия делают электропровода, самолеты, корабли (см. статью «Плавучесть«), автомобили, банки для напитков, фольгу для приготовления пищи. Алюминиевые банки для напитков очень легкие и прочные.

Латунь. Ковкий сплав меди и цинка. Из латуни делают украшения, орнаменты, музыкальные инструменты, винты, кнопки для одежды.

Бронза. Известный с древнейших времен ковкий, не подверженный коррозии сплав меди и олова.

Кальций. Мягкий серебристо-белый металл. Входит в состав известняка и мела, а также костей и зубов животных. Кальций в человеческом организме содержится в костях и зубах. Он использует­ся в производстве цемента и высоко качественной стали.

Хром. Твердый серый металл. Ис­пользуется в производстве нержавеющей стали. Хромом покрывают металлические изделия в защитных целях и для придания им зеркального блеска.

Медь. Ковкий красноватый металл. Из меди делают электропровода, резервуары для горячей воды. Медь входит в со­став латуни, бронзы, мельхиора.

Мельхиор. Сплав меди и никеля. Из него делают почти все «серебряные» монеты.

Золото. Мягкий неактивный ярко-желтый металл. Используется в электронике и в ювелирном деле.

Железо. Ковкий серебристо-белый ферромагнетик. Добывается в основном из руды в доменных печах. Используется в инженерных конструкциях, а также в производстве стали и сплавов. В нашей крови тоже есть железо.

Свинец. Тяжелый ковкий ядовитый синевато-белый металл. Добывается из минерала гале­нита. Из свинца делают электрические батареи, крыши и экраны, защищающие от рентгеновских лучей.

Магний. Легкий серебри­сто-белый металл. Горит ярко-белым пламенем. Используется для сигнальных огней и фейерверков. Входит в состав легких сплавов. В праздничных ракетах есть магнии и другие металлы.

Ртуть. Тяжелый серебристо-белый ядовитый жидкий металл. Используется в термометрах, входит в состав зубной амальгамы и взрывчатых веществ.

Платина. Ковкий се­ребристо-белый неактивный металл. Ис­пользуется в качестве катализатора, а так­же в электронике и в производстве ювелирных изделий. Платина не вступает в реакции. Из нее делают украшения.

Плутоний. Радиоактивный металл. Образуется в ядерных реакторах при бомбардировке урана и используется в производстве ядерного оружия (см. статью «Ядерная энергия и радиоактивность«).

Калий. Легкий серебристый металл. Очень химически активен. Калиевые соединения входят в состав удобрений.

Серебро. Ковкий серовато-белый металл. Хорошо проводит тепло и электричество. Из него дела­ют украшения и столовые приборы. Входит в состав фотоэмульсии (см. статью «Фотография и фотоаппараты«).

Припой. Сплав олова и свинца. Плавится при сравнительно низкой температуре. Используется для спайки проводов в электронике.

Натрий. Мягкий серебристо-белый хими­чески активный металл. Входит в состав поваренной соли. Используется в производстве натриевых ламп и в химической промышленности.

Сталь. Сплав железа с углеродом. Широко применяется в промышленности. Нержа­веющая сталь — сплав стали с хромом — не подвержена коррозии и используется в авиакосмической индустрии (см. статью «Ракеты и космические аппараты«).

Олово. Мягкий ковкий серебристо-белый металл. Слоем олова сталь защищают от коррозии. Входит в состав таких сплавов, как бронза и припой.

Титан. Прочный белый ковкий металл, не подверженный коррозии. Из титановых сплавов делают космические аппараты, са­молеты, велосипеды.

Вольфрам. Твердый серовато-белый металл. Из него изготавливают нити ламп накаливания и детали электронных приборов. Из стали с Нить вольфрамом делают накаливания режущие инструменты.

Уран. Серебристо-белый радиоактивный металл, источник ядерной энергии. При­меняется при создании ядерного оружия.

Ванадий. Твердый ядовитый белый металл. Придает прочность стальным сплавам. Используется как катализатор при производстве серной кислоты.

Цинк. Синевато-белый металл. Добывает­ся из цинковой обманки. Используется для гальванизации железа, производства электробатареек. Входит в состав латуни.

Переработка металлов

Переработка — это повторное использование сырья, способ сохранить природные ресурсы. Металлы легко поддаются переработке, т.к. их можно переплавить и получить металл такого же качества, как и тот, что получается непосредственно из руды. Переплавлять сталь и алюминий несложно и выгодно.

Медь, олово, свинец также подвергают­ся переплавке. Железные и стальные предметы можно извлечь из кучи отходов при помощи сильного магнита. Большую часть стали для переработки добывают из старых автомобилей и станков, но часть ее получают из фабричных металлических опилок и даже бытовых отходов.

Стальной лом смешивают с расплавленным железом и получают новую сталь.

Алюминий — не ферромагнетик, но алюминиевые отходы можно отделить от железного лома при помощи электромагнита. Больше половины банок для напитков делают из алюминия, полученного пу­тем переработки. Чтобы узнать, сделана банка из стали или алюминия, возьми магнит.

К стальной банке он прилипнет, а к алюминиевой — нет. Переработка металлолома требует значительно меньше энергии, чем получение металла из руды, и отходов при переработке меньше. Теоретически металл можно перерабатывать сколько угодно раз.

Для переработки алюминиевых банок необходимо в 20 раз меньше энергии, чем для производства нового алюминия.

Сделай своими руками
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: