Электричество из радиоволн своими руками

Содержание
  1. Как получить бесплатное электричество (мы нашли четыре способа)
  2. Электроэнергия из водопровода
  3. Электричество от самодельных элементов питания
  4. Электричество из земли
  5. Радиоволны мобильного телефона способны без проводов передавать электричество
  6. Приемник беспроводного электричества мобильной связи
  7. Советы по сборке и настройке
  8. Как сделать самому энергию из эфира для дома: энергия эфира, самодельные генераторы, схема Стивена Марка
  9. Энергия из пустоты
  10. Эфир и его свойства
  11. Никола Тесла и его идеи
  12. Нынешние и классические разработки
  13. Энергия воздушной тяги
  14. Незамысловатая домашняя мини-электростанция
  15. Применение магнитов и маховика
  16. Простой генератор Тесла
  17. Устройство разработки Стивена Марка
  18. Электричество из радиоволн своими руками – Справочник металлиста
  19. Атмосферное электричество в 18 веке
  20. Бесплатная энергия из атмосферного электричества
  21. Как создать устройство, способное получить электричество из воздуха своими руками, схема
  22. Можно ли получить электричество из воздуха
  23. Опыты известных учёных
  24. Как получить электричество из подручных средств – RMNT – медиаплатформа МирТесен
  25. Угольные батареи из алюминиевых банок
  26. Электричество из окисления
  27. Аварийный источник энергии
  28. Пневматическая зажигалка

Как получить бесплатное электричество (мы нашли четыре способа)

Электричество из радиоволн своими руками

Для того чтобы получить бесплатное электричество от радиаторов отопления, нам понадобится дополнительное оборудование в виде термоэлектрического элемента Пельтье. Элемент Пельтье представляет собой две керамические пластины, между которыми заключено большое количество полупроводников в виде термопар.

Принцип действия основан на возникновении разности температур при протекании электрического тока. Обычно такие устройства используют для создания мобильных холодильных установок, но можно добиться и обратного эффекта. Достаточно изменить полярность подключения элемента, и эффект охлаждения сменится на нагревание. 

Элемент Пельтье. aliexpress.ru

Если с одной стороны подвести тепло к этому элементу, а с другой, наоборот, охлаждать его, то благодаря созданию разности температур на его поверхностях, можно снимать с него электроэнергию, которой вполне хватит, например для работы светодиодной лампы.

Чтобы закрепить конструкцию на трубе отопления, можно воспользоваться алюминиевым уголком. А для повышения плотности контакта образовавшиеся зазоры можно уплотнить алюминиевой фольгой.

1- Труба отопления2- Алюминиевый уголок3- Радиатор от старого ПК4- Элемент Пельтье (40*40 мм)5- Повышающий преобразователь6- Алюминиевая фольга( / Игорь Белецкий)

Также потребуется преобразователь напряжения, который повышает создаваемое элементом Пельтье напряжение 0,5 В до 3–5 В, необходимых для работы светодиодной лампы.

Повышающий преобразователь напряжения. aliexpress.ru

С одной стороны мы нагреваем элемент Пельтье теплом от радиатора отопления, а с другой стороны охлаждаем его окружающим воздухом. Чтобы увеличить площадь поверхности охлаждения, можно использовать обычный радиатор охлаждения от старого компьютера. Чем больше будет его площадь, тем лучше.

Такое устройство может пригодиться в качестве бесплатного дежурного освещения, например, в подъезде. Конечно, этот метод получения электричества можно назвать лишь условно бесплатным, ведь за отопление вы так или иначе платите деньги, но почему бы не использовать кэшбек в виде бесплатной электроэнергии?

Электроэнергия из водопровода

Второй не менее интересный способ — врезка минигенератора в водопровод. Получение электричества от энергии движения потока воды само по себе не ново. Гидроэлектростанции, использующие подобный принцип, работают по всему миру. А плотины для их использования являются одними из самых сложных технических устройств.

Интересный факт: При возведении плотины Гувера было израсходовано 600 тыс. тонн цемента и 3,44 млн м³ специального наполнителя. Бетон, залитый в 1933 году до сих пор окончательно не застыл.

В процессе строительства участвовали более 5 тыс. рабочих, 96 человек погибло.

Небольшие генераторы, которые можно установить непосредственно в домашний водопровод, можно приобрести в интернет-магазинах. Генератор, подключают к небольшому аккумулятору и используют накопленную таким образом электроэнергию для освещения.

aliexpress.ru

Некоторые умельцы делают такие генераторы своими руками, собирая их из старого водяного счетчика и помпы от стиральной машины. Подключают такие генераторы даже к бачкам унитаза. Расчеты показывают, что выработки электричества от одного смыва бачка унитаза хватит на 12 минут непрерывного свечения светодиодной лампы мощностью 5 ватт.

/ Дмитрий Компанец

Электричество от самодельных элементов питания

Электроэнергию можно получить от импровизированных батареек, собранных буквально «на коленке». Как известно любая батарея использует в своей основе заряженные частицы образующиеся в процессе взаимодействия металлов, помещенных в токопроводящую жидкость.

Достаточно взять две пластины различных металлов, например, цинка и меди, и поместить их в стаканчик с водой, а затем замкнуть эту цепь, используя в качестве нагрузки светодиодную лампу. Такая конструкция позволит вам получить порядка 0,8 В.

Причем это напряжение не будет зависеть от площади пластин.

Если подсоединить несколько таких пар пластин последовательно, то вы получите довольно емкую батарею, которой хватит на работу хорошего светодиодного фонаря.

classtube.ru

Электричество из земли

В 1896 году Натан Беверли Стаблфилд изготовил батарею, используя для этого энергию земли и получил патент на своё устройство.

Для него нужны два провода, один металлический без изоляции – чтобы он мог активизировать магнитное поле, которое создается и поддерживается в пределах и вокруг тела катушки. Второй – медный в обмотке, который наматывается на стальной сердечник.

/ Lidmotor

После каждого витка укладывается слой изолирующего материала. Такую конструкцию помещают во влажную землю, провода выводят наружу и батарея улавливает естественные электрические токи, позволяя использовать электричество в своих целях. Такие батареи можно использовать, например, на своем участке для декоративной подсветки дорожек.

/ Lidmotor

Как видите, электрическая энергия окружает нас и находится буквально повсюду. Главное – это знать основные принципы и законы, по которым она извлекается и тогда извлечь ее не составит труда даже в домашних условиях с минимальными затратами.

document.addEventListener('DOMContentLoaded', function () { const smotriSdk = new window.SmotriSdk.Sdk(); smotriSdk.initPlayer(['playerSmotriFirst']); });Во время загрузки произошла ошибка.

Радиоволны мобильного телефона способны без проводов передавать электричество

Электричество из радиоволн своими руками

26 Июл 2012

В статье рассказывается о самодельном устройстве беспроводной передачи энергии (электричества), которое может работать на энергии радиоволн мобильной связи.

Мобильные телефона настолько распространены, что сегодня они есть практически у каждого, причем не в единственном экземпляре. Несмотря на кажущуюся безобидность, они излучают невидимые радиоволны в моменты, когда ведется дозвон и ведется разговор.

На сегодняшний день авторитетные исследователи доказали неблагоприятное влияние радиоволн высокой частоты на органы живых организмов, поэтому мобильный телефон – это прямая угроза для нашего мозга, ведь чаще всего люди не пользуются наушниками в качестве проводной гарнитуры для разговоров.

Некоторые люди считают, что все эти разговоры о вреде мобильной связи «притянуты за уши», а величина излучения настолько мала, что она не в состоянии оказать какого-либо существенного вреда организму человека.

Но они не правы лишь по тому, что в действительности вредной энергии радиоволн, «выкидываемой» в ваш организм просто море. Её достаточно даже для того, чтобы питать маленькую лампочку, к примеру, светодиод.

Этой энергии хватает с лихвой, чтобы раковые клетки начали активно размножаться.

Чтобы открыть глаза таким скептикам, мною было разработано и собрано простое устройство со светодиодом, который загорается даже без батареек, потребляя для своих нужд лишь энергию радиоволн  мобильной связи.

В итоге получился невероятно миниатюрный рабочий прибор для измерения интенсивности вредного излучения от мобильного телефона, который может собрать даже школьник.

Если вам интересно, то потратьте пять минут личного времени на сборку такого интересного приспособления, которым вы сможете удивить своих друзей.

Приемник беспроводного электричества мобильной связи

Для реализации моих замыслов я подыскал следующее:

1. толстую медную проволоку, из которой можно будет собрать своеобразную антенну и согласующее устройство, резонирующее на частоте работы мобильной связи (1000-1800 МГц);

2. диод 1N21B или любой другой германиевый диод, который можно выпаять из старого радиоприемника или телевизора;

3. светодиод, предназначенный для регистрации энергии радиоволн мобильного телефона. Если эти 3 вещички найдены, то можно приступать к сборке этого прибора.

Советы по сборке и настройке

Во-первых, стоит найти пару телефонов, один из которых будет постоянно дозваниваться до второго. Все работы выполняйте в непосредственной вблизи от включенных телефонов, таким образом, вы «поймаете» момент включения устройства.

Во-вторых, сгибаем проволоку в квадрат, каждая сторона которого должна равняться 7.5 см.

В-третьих, хорошенько лудим концы проволоки, чтобы можно было нормально припаять диод и светодиод. Для этого вам вполне может подойти вот такой самодельный миниатюрный паяльник.

В- четвертых, добиваемся правильной геометрической формы проволоки и начинаем искать место наивысшего уровня сигнала мобильной связи, которое, как правило, расположено сзади в верхней части телефона.

Если схема собрана мало-мальски правильно, то светодиод начинает светиться сразу же, как вы поднесете его к телефону.

В-пятых, для увеличения яркости свечения светодиода необходимо точно определить длину проволоки.

Безусловно, точно определить длину волны радиосигнала вы без специального дорогостоящего оборудования не сможете, да это и не требуется.

В реальной сборке можно пойти на хитрость и выполнить следующее: по кусочку (по 2мм) укорачивать длину проволоки, подыскивая точную длину проволоки для резонанса.

В некоторых регионах хороший результат показал медный квадрат-антенна, длина стороны которого равна 5.5 см.

Если вам точно известна частота мобильной связи в вашем регионе, то посчитайте длину волны по формуле: длина волны (м)= 300/частота (МГц). Затем поделите длину волны на 4.

Результат этого вычисления – длина одной стороны медного квадрата. Для 1000МГц мы получаем 0.3 метра, т.е. 30 сантиметров.

При этом длина одной стороны медного приемника получается: 30/4=7.5 см. Таким образом, если основная частота мобильной связи в вашем регионе ведется на частоте 1000МГц, то лучший приемник должен иметь квадратную форму со стороной 7.5 см. В качестве альтернативы квадратной формы, можно применить круглый приемник.

После нахождения оптимальных размеров и формы, можно смело припаять диод в прямом включении и светодиод. Диод будет выполнять роль некого детектора, и светодиод будет мигать в такт продетектированному радиосигналу. Это все очень похоже на работу детекторного радиоприемника, с той лишь разницей, что нагружен он будет не динамиком или высокоомным головным телефоном, а светодиодом.

Для доказательства полной работоспособности привожу снимки телефонов и работающих приборов.

Собрав аналогичную установку у себя дома, вы поймете, что энергии радиоволн мобильного телефона действительно хватает, чтобы устройство работало и без батареек! Этим небольшим экспериментом мы еще раз доказали, что беспроводная передача энергии имеет место быть.

Это вам тоже понравится:

♦ Зарядка телефона в походных условиях

♦ Как получить 1000 рублей на экономии электроэнергии

♦ Как просчитать количество оборотов электродвижка

А теперь наше традиционное видео:

Будем благодарны, если Вы поделитесь этой статьей здесь:

Этот сайт читают уже более 950 человек!
Вы тоже можете получать новые материалы по почте:

Как сделать самому энергию из эфира для дома: энергия эфира, самодельные генераторы, схема Стивена Марка

Электричество из радиоволн своими руками

Сама идея устройства для получения дармовой энергии из эфира неизменно была очень востребована. Не только аматёры, но и многие именитые учёные всерьёз и небезрезультатно занимались этим вопросом. Нынче не стало меньше желающих разработать подобную установку и её сделать самому. Энергию из эфира для дома сегодня можно попытаться получить, используя простые и доступные схемы.

Энергия из пустоты

Наука не даёт вразумительного определения ни полю, ни энергии. Зато она ясно формулирует — энергия не берётся из ниоткуда и никуда не девается. Пытаясь добывать «энергию из ничего», мы можем только стараться «встраиваться» в процесс её естественного преобразования из одних видов в другие.

Энергия определяется полезной работой, а поле — пространственными характеристиками влияния его источника. И статический электрический заряд, и динамический магнитный эффект вокруг проводника с током, и тепло нагретого тела считаются полями.

Любое поле может выполнить полезную работу, следовательно, передать часть своей энергии. Именно это свойство побуждает искать источники дармовой энергии в различных полях. Считается, что такой энергии существует в разы больше, чем в освоенных человечеством традиционных источниках.

Например, мы умеем использовать энергию гравитации огромной Земли, но не умеем её извлекать из притяжения малюсенького камня. Она слишком незначительная, чтобы это имело смысл, но практически неисчерпаема. Если придумать некий способ её извлечения из камешка, мы получим новый источник энергии.

Примерно этим занимаются исследователи и разработчики всех видов и мастей в попытках извлечь «энергию из ничего». То поле, из которого различные изыскатели стремятся научиться добывать энергетический ресурс, они называют эфир.

Эфир и его свойства

Этот термин бытовал в ходу у науки ещё столетие назад. Используя понятие «эфир», открыты были все базовые законы физики и не только. Оперируя именно этим понятием, проводили свои исследования и разработки Никола Тесла и другие умы XIX и начала XX века.

Наука однажды от эфира отреклась. В результате многие явления, такие как поля, оказались без него необъяснимы, а он сам теперь не имеет чёткого определения. Это не помешало использовать понятие «эфир» в обосновании разработок получения «свободной энергии из ничего». Хотя ныне под этим зачастую подразумеваются совершенно разные явления.

Сегодня под выражением «получить эфирную энергию» понимают как добычу её из того же эфира, который имел в виду Н. Тесла, так и вообще все способы получения «дармовой энергии из ничего». Эфир при этом считается структурной частью пространства и носителем любой энергии.

Никола Тесла и его идеи

Большинство современных конструкторов стремятся получить электричество именно «из воздуха». Самым известным разработчиком таких способов был Никола Тесла. Его называют первооткрывателем чуть ли не всех ныне существующих «благ цивилизации». Интернет, радио, телевидение, мобильная связь — практически всё считается основанным на открытых им ещё в начале XX века принципах.

Многие его разработки считаются утраченными ещё со времени его смерти. Одни из них известны исключительно как принципы, другие — всего лишь в общих чертах. Тем не менее, многие нынешние конструкторы пытаются сегодня воспроизвести открытия и устройства Тесла, пользуясь уже современными научными и технологическими открытиями.

Большинство идей Тесла базируются на извлечении её из полей, формируемых взаимодействием Земли со своей ионосферой. Эта система рассматривается как большой конденсатор, в котором одна пластина — Земля, а другая — её ионосфера, облучаемая космическими лучами. Как и любой конденсатор, такая система постоянно накапливает заряд.

А разрабатываемые по идеям Тесла различные самодельные устройства предназначены для извлечения этой энергии.

Нынешние и классические разработки

Современные открытия и технологические разработки предоставляют широкое поле деятельности в получении «холодного электричества». Кроме устройств по идеям Тесла, сегодня широко распространены такие разработки для получения «энергии из пустоты», как:

  • радиантное электричество;
  • использование мощных неодимовых магнитов;
  • получение тепла от механических нагревателей;
  • трансформация энергии земли и излучений космоса;
  • вихревые двигатели;
  • термические земляные насосы;
  • солнечные конвекторы;
  • торсионные генераторы.

Все эти способы имеют своих приверженцев, но большинство из них довольно ресурсоёмкие и затратные. Немаловажно и то, что они требуют глубоких специальных знаний и изобретательности.

Всё это делает подобное конструирование в домашних условиях затруднительным. Энергия из эфира своими руками может быть получена с помощью несложных и доступных схем.

Их реализация не потребует глубоких знаний или больших издержек, но некоторая подгонка, настройка и расчёты всё же понадобятся.

Не все такие разработки можно назвать извлекающими именно «эфирную энергию».

С точки зрения отсутствия расхода ресурсов на выработку электроэнергии, их по праву можно назвать извлекающими «энергию из ничего».

Энергоносители этих систем не разрушаются при передаче энергии — отдавая её, они тут же её снова накапливают. Сама же система может вырабатывать электроэнергию если и не вечно, то, по крайней мере, очень-очень долго.

Энергия воздушной тяги

Эта идея — типичный пример такого устройства. Она не является в строгом смысле слова способом извлечь энергию из эфира. Это, скорее, способ её простого, дешёвого и длительного получения.

Для его реализации понадобится высокая труба, 15 метров и более. Такая труба ставится вертикально. Нижнее и верхнее отверстия должны быть открыты. Внутри неё устанавливаются электродвигатели с пропеллерами соответствующего диаметра , которые должны легко крутиться вместе с ротором. Восходящий поток воздуха вращает лопасти и роторы электродвигателей, в статоре вырабатывается электроэнергия.

Незамысловатая домашняя мини-электростанция

Одно из самых элементарных устройств можно сделать самостоятельно из кулера от компьютера (рис.1). В нём используется такая современная разработка, как неодимовые магниты.

Для его изготовления нужно:

  • подобрать компьютерный кулер;
  • снять с него трансформаторные катушки (их там 4 штуки);
  • вместо них поставить 4 маленьких неодимовых магнита;
  • их нужно сориентировать в исходных направлениях катушек;
  • правильно подобрав положение магнитов, заставить вращаться ротор моторчика.

Такая электростанция позволяет работать подключённой к ней маленькой лампочке. Взяв мотор побольше и более сильные магниты, можно получить больше электроэнергии.

Применение магнитов и маховика

Возможности подобной электростанции значительно увеличиваются при использовании инерции тяжёлого маховика. Упрощённая модель такой конструкции показана на рис. 2.На сегодняшний день существует масса разработок — в том числе и запатентованных подобных конструкций с горизонтальным и вертикальным расположением маховика. Все они имеют общую схему устройства.

Основная деталь — барабан маховика, по окружности которого расположены довольно мощные неодимовые магниты. По окружности движения ротора-маховика расположены несколько электрических катушек, выполняющих роль электромагнита и генератора электричества (статора). В комплект также входит аккумулятор и устройство переключения направления подачи напряжения.

Будучи один раз запущен, маховик, вращаясь по кругу, возбуждает своими магнитами электромагнитное поле в катушках. Это приводит к появлению в проводнике электрического тока, который подаётся для зарядки аккумулятора. Периодически часть вырабатываемой электроэнергии используется для подталкивания маховика. Заявляемый разработчиками КПД такого механизма составляет 92%.

В обоих этих устройствах энергия вырабатывается за счёт инерции вращения и сравнительно недавно разработанных мощных магнитов. Понимая принцип работы устройства, можно попытаться сделать его самостоятельно дома. По словам конструкторов, с помощью него можно получать до 5 кВт*ч полезной мощности.

Простой генератор Тесла

Сегодняшнее воздушное пространство значительно сильнее ионизировано, чем во времена Тесла.

Основание тому — существование огромного количества линий электропередач, источников радиоволн и прочих причин ионизации. Поэтому попытка получить электричество из эфира своими руками с помощью простейших конструкций по идеям Тесла может быть весьма эффективной.

Начинать самостоятельные эксперименты лучше с доступных для изготовления в домашних условиях приспособлений. Одно из них — простейший трансформатор Тесла.

Это устройство позволяет буквально «получать энергию из воздуха». Его принципиальная схема изображена на рис. 3.В этой установке используются две пластины.

Одна закапывается в землю, а другая поднимается на некоторую высоту над её поверхностью.

На пластинах, как и в конденсаторе, накапливаются потенциалы противоположного знака. Само устройство состоит из стартового источника питания (аккумулятор 12 В), подключённого через разрядник к первичной обмотке трансформатора, и параллельно включённого конденсатора. Накопившийся заряд пластин снимается со вторичной обмотки трансформатора.

Эта конструкция представляет опасность тем, что фактически моделирует возникновение атмосферного разряда молнии, и работы с такой установкой нужно проводить с соблюдением всех мер безопасности.

С помощью подобной конструкции можно получить небольшое количество электричества. Для более серьёзных целей потребуется использовать более сложные и дорогостоящие в реализации схемы. В этом случае также не обойтись без достаточных знаний физики и электроники.

Устройство разработки Стивена Марка

Эта установка, созданная электриком и изобретателем Стивеном Марком, предназначена для получения уже довольно значительного количества холодного электричества (рис.4).

С помощью него можно питать как лампы накаливания, так и сложные бытовые устройства — электроинструмент, телерадиоаппаратуру, электродвигатели. Он назвал его Тороидальный Генератор Стивена Марка (TPU).

Изобретение подтверждено патентом США от 27 июля 2006 года.

Принцип его действия основан на создании магнитного вихря, резонансных частот и ударов тока в металле. В отличие от многих других подобных устройств, будучи уже запущенным, генератор не требует подпитки и может работать неограниченное количество времени. Он был воссоздан много раз различными испытателями, которые подтверждают его работоспособность.

Существуют несколько конструкций этого устройства. Принципиально они между собой не разнятся, есть некоторые отличия в реализации схемы.

Здесь приведена схема и конструкция 2-частотного TPU. В основу принципа его действия положено столкновение вращающихся магнитных полей. Устройство имеет вес меньше 100 г и довольно простую конструкцию. Оно включает в себя такие компоненты:

  1. Внутреннюю основу в форме кольца.
  2. Две коллекторные катушки — внутреннюю и внешнюю.
  3. Четыре двухпроводные катушки управления.

Внутрення кольцеобразная основа (рис.5) выполняет роль стабильной платформы, вокруг которой расположены все другие катушки. Материал для изготовления кольца — пластик, фанера, мягкий полиуретан.

Размеры кольца:

  • ширина: 25 мм;
  • внешний диаметр: 230 мм;
  • внутренний диаметр: 180 мм;
  • толщина: 5 мм.

Внутренняя коллекторная катушка может быть сделана из 1–3 витков 5 параллельных многожильных проводов-литцендратов. Для намотки витков можно также использовать обычный одножильный провод с диаметром жилы 1 мм. Схематический вид после изготовления представлен на рис. 6.

Внешняя коллекторная катушка, она же — выходной коллектор двухполярного типа. Для его намотки можно использовать тот же провод, что и для управляющих катушек. Им покрывается вся доступная поверхность.

Каждая из катушек управления (рис.7) — плоского типа, по 90 градусов для установки вращающегося магнитного поля.

Чтобы сделать катушки с одинаковым количеством витков, необходимо до наматывания отрезать 8 проводов немного длиннее метра. Выводы поможет различать разный цвет проводов. Каждая катушка имеет 21 виток двухпроводного стандартного одножильного провода сечением 1 мм со стандартной изоляцией.

Выводы с наконечниками (рис. 7) — это два вывода внутренней коллекторной катушки.

Обязательной является установка общей обратной земли и 10-микрофарадного полиэстрового конденсатора, без которого на всё оборудование будут отрицательно воздействовать токи и возвращаемое излучение.

Схема соединений делится на 4 секции:

  • входа;
  • управления;
  • катушек;
  • выхода.

Секция входа предназначена для предоставления интерфейса к генератору прямоугольного сигнала

и выдачи синхронизированных прямоугольных волн подходящим образом. Это обеспечивается с помощью КМОП-мультивибратора.

Для реализации секции управления МОСФИТами (MOSFET) лучшее решение — стандартный интерфейс IRF7307, предлагаемый конструктором.

Как видно из последней модели, человеку без специального образования и навыков работы с физическими устройствами и приборами собрать такую конструкцию дома будет достаточно сложно.

Существует множество схем и описаний подобных устройств других авторов. Капанадзе, Мельниченко, Акимов, Романов, Дональд (Дон) Смит хорошо известны всем желающим найти способ получения энергии из ничего. Многие конструкции довольно простые и недорогие для того, чтобы их сделать и самому получить энергию из эфира для дома.

Вполне возможно, что многим таким аматёрам удастся практически достоверно узнать, как получить электричество в домашних условиях.

Электричество из радиоволн своими руками – Справочник металлиста

Электричество из радиоволн своими руками

Многие ученые интересуются атмосферным электричеством. Историки находят на дошедших до нас картинах, гравюрах, а также архитектурных сооружениях следы того, что в не таком далеком прошлом люди им пользовались.

Представители технических профессий пытаются объяснить, как и на каком принципе работали эти установки по добыче электричества из атмосферы.

Но дальше настольных установок с минимальной мощностью разработки не пошли, а по их убеждениям, этого атмосферного электричества должно с избытком хватать на все нужды всего человечества.

Ответ на эту проблему кроется как раз в концентрации самого этого электричества в атмосфере. Атмосферное электричество прошлого было другим.

Примерно за 450 лет наша Земля не только изменила наклон своей оси и приобрела огромный объем соленой воды, но также и потеряла концентрацию атмосферного давления.

А так как все взаимозависимо, концентрация атмосферного электричества напрямую зависит от концентрации атмосферы, и сегодня его едва хватает на периодические пробои.

Атмосферное электричество в 18 веке

Первым ученым, который решил серьезно изучать молнию, а заодно и защиту от нее, стал выдающийся американский ученый-дипломат Бенджамин Франклин. В 1750 Франклин опубликовал работу, в которой предложил провести эксперимент – запустить воздушного змея во время грозы. В распоряжении Франклина были довольно простые средства:

  1. Обычный воздушный змей, на крестовине которого был прикреплен железный провод.
  2. Бечевка, с привязанной к ней шелковой лентой и железным ключом.

Он запускал его во время грозы и получил два удивительных результата:

  • Доказал электрическую природу молнии, потому что шелковые края ленты начали топорщиться, из ключа вылетали искры и электризовался железный провод.
  • Впервые открыл громоотвод.

В 1753 году аналогичный эксперимент с молнией проводил Георг Рихман в Санкт-Петербурге. Он стоял на расстоянии всего 30 см от своего прибора, который назывался электрическим указателем и был прототипом электроскопа.

Во время грозы возле прибора возник бледно-голубой шар и направился к голове ученого. Прозвучал громкий хлопок, и Рихман упал замертво.

Ассистентом ученого в тот день был Соколов, который впоследствии изобразил схему, представленную ниже.

Со времен Франклина и Рихмана приборы для опытов стали более серьезными, но молния продолжает вызывать много вопросов.

Бесплатная энергия из атмосферного электричества

Сейчас существует всего два способа, с помощью которых можно добыть электричество из воздуха – с помощью ветрогенераторов и с помощью полей, которые пронизывают атмосферу. И если ветряные мельницы видели уже многие и примерно представляют, как они работают, и откуда берется энергия, то второй тип приборов вызывает множество вопросов.

Интересные открытия и машины принадлежат двум изобретателям – Джону Серлу и Сергею Годину. И большая часть экспериментов, которые проводят любители у себя дома, основывается на одной из двух схем. Как же этим двум людям удалось получить энергию из воздуха?

Джон Серл утверждает, что ему удалось создать вечный двигатель. В центр своей конструкции он поместил мощный многополюсный магнит, а вокруг него намагниченные ролики.

Под действием электромагнитных сил ролики катятся, стараясь обрести стабильное положение, однако центральный магнит устроен так, что ролики никогда этого положения не достигают.

Конечно, рано или поздно такая конструкция все равно должна остановиться, если не придумать способ подпитывать ее энергией извне. Во время одного из испытаний машина Серла проработала без остановки два месяца.

Учёный утверждал, что ему удалось запатентовать способ подпитки своего прибора прямо от энергии вселенной, которая, как он считал, содержится в каждом кубическом сантиметре пространства. В это трудно поверить, но первую версию своего двигателя Джон Серл запатентовал еще в 1946 году.

Будучи собранным, это устройство приходило в самовращение и вырабатывало электрическую мощность.

На Серла мгновенно посыпались заказы от желающих приобрести такую машину, способную черпать энергию из воздуха, однако разбогатеть на своем изобретении ученый не успел.

Оборудование из лаборатории вывезли в неизвестном направлении, а его самого посадили в тюрьму по обвинению в краже электричества. Независимый британский суд просто не смог поверить, что всю электроэнергию для освещения своего дома Джон Серл производил сам.

Другой аппарат, внешне похожий на летающую тарелку, был обнаружен в подмосковном дачном поселке, и это первый в мире генератор электричества, которому не требуется топливо.

Его изобретатель Сергей Годин уверен, что такого агрегата вполне хватит, чтобы обеспечить электричеством всех своих соседей по даче. Такое устройство, будучи установлено в подвале дома, полностью бы обеспечило большой современный жилой дом электричеством.

Физик уверен, что на земле существует субстанция, до сих пор неизвестная современным учёным. Сергей Годин называет это явление эфиром.

По схеме, расположенной ниже, можно провести опыт посерьезней, и повторить эксперимент самого Теслы, собрав миниатюрную катушку.

Вторичная обмотка должна состоять из 5 витков провода диаметром 1,5 мм. Для первичной обмотки потребуется около 50 м провода.

Активный компонент в этом устройстве – это транзистор 2n2222, также имеется резистор и, в общем-то,  это все компоненты, которые входят в эту катушку.

Несмотря на то, что катушка получится маленькой, она все равно сможет выдавать небольшую искру, если вы дотронетесь до нее пальцем, зажечь спичку или заставить лампочку гореть.

Наматывать проволоку можно на любой корпус, главное, чтобы в нем не было металлических частей. Не повторяйте ошибку, которую совершают многие.

Если хотите сделать ее автономно не засовывайте батарею внутрь корпуса, если внутри находится транзистор, катушка работает нормально и почти не греется, но если бы там была батарея, то магнитное поле, которое создает сам трансформатор Теслы, будет влиять на батарею, и вы выведете из строя транзистор. Чем аккуратнее получится у вас наматывать витки, тем лучше будет результат, а для того, чтобы катушка сохранилась у вас подольше, можно покрыть ее бесцветным лаком для ногтей.

Более серьезные эксперименты требуют больших денежных, временных и силовых затрат, но даже на схеме выглядят впечатляюще.

Наверняка у вас на кухне есть вентиляционный канал, который иногда работает даже в выключенном состоянии, от сквозняка. Его можно использовать для того, чтобы бесплатно осветить комнату. Сделать это можно из подручных материалов, все подробно рассказано в видео:

Схема простой электростанции:

Как создать устройство, способное получить электричество из воздуха своими руками, схема

В условиях современного мира, когда постоянно дорожают энергоносители, многие люди обращают свои взоры на возможности сэкономить свои средства посредством использования каких-либо альтернативных источников электроэнергии.

Данная проблема занимает умы не только доморощенных изобретателей, которые пытаются найти решение дома с паяльником в руках, но и настоящих учёных. Это вопрос, который муссируется уже давно, и предпринимаются самые разные попытки для нахождения новых источников электричества.

Можно ли получить электричество из воздуха

Возможно, многие могут подумать, что это откровенный бред. Но реальность такова, что получить электроэнергию из воздуха возможно. Существуют даже схемы, которые могут помочь создать устройство, способное осуществить получение этого ресурса буквально из ничего.

Принцип работы такого устройства заключается в том, что воздух является носителем статического электричества, просто в очень малых количествах, и если создать подходящее устройство, то вполне можно накапливать электричество.

Опыты известных учёных

Можно обратиться к трудам уже известных учёных, которые в прошлом пытались получать электричество буквально из воздуха. Одним из таких людей является знаменитый учёный Никола Тесла. Он был первым человеком, который задумался о том, что электроэнергию можно получить, грубо говоря, из ничего.

Конечно, во времена Тесла не было возможности записать все его опыты на видео, поэтому на данный момент специалистам приходится воссоздавать его устройства и результаты его исследования согласно его записям и старым свидетельствам его современников. И, благодаря многим опытам и исследованиям современных учёных, можно соорудить устройство, которое позволит осуществить получение электричества.

Как получить электричество из подручных средств – RMNT – медиаплатформа МирТесен

Электричество из радиоволн своими руками

Вашему вниманию предлагаются интересные решения для слаботочных подручных электроприборов — фонариков, зарядных устройств, зажигалок. В статье приведены подробные фотографии и видеоинструкции, как собрать оригинальные источники электричества из подручных средств своими руками.

Ни для кого не секрет, что энергия буквально окружает нас и её носителями могут быть не только ценные полезные ископаемые — нефть, газ, уголь, но и металлы, углеводы, объекты, движущиеся в силу естественных причин. Рассмотрим подробнее, как же из подручных средств можно извлечь электрическую энергию.

В этом разделе мы наглядно продемонстрируем возможность извлекать электричество при помощи химической и электролитической реакции.

Угольные батареи из алюминиевых банок

Обычные угольные батарейки можно сделать своими руками. Для этого нам понадобится:

  1. Две жестяные банки из-под напитков по 0,5 л.
  2. Два графитовых стержня Ø 15–20 мм длиной по высоте банки + 20–30 мм.
  3. Обычный уголь или зола.
  4. Парафин или воск.
  5. Несколько медных проводов, нож.

Способ предусматривает воссоздание в увеличенном виде миниатюрных батареек для бытовых приборов.

Ход работы:

  1. Вырезать верха банок, оставляя борта.
  2. Установить на дно пенопласт толщиной 30 мм.
  3. Установить стержни внутрь банок, притопив их в пенопласт.
  4. Засыпать пазухи углём. До края банки должно остаться 10–15 мм.
  5. Залить пазухи подсоленной водой (1 ст. ложка на 1 литр).
  6. Залить растопленным парафином или воском свободное место в банке (до верха).

Каждая из банок будет идентична по энергоёмкости одной пальчиковой батарейке 1,5 В. Их можно соединять последовательно, подзаряжать и использовать в бытовых приборах — часах, приёмнике, светодиодных светильниках.

Батарейки из жестяных банок — пошаговое видео

Электричество из окисления

Белки, жиры и углеводы — источники энергии для организма человека. Она извлекается благодаря реакциям, проходящим в желудке и кишечнике. А именно — при воздействии желудочной кислоты на углевод высвобождается энергия, заключённая в нём. Что если попробовать заменить желудочную кислоту на более привычную — уксусную?

Для опыта нам понадобится:

  1. Сахар-рафинад — 2 куска.
  2. Анодированные саморезы 15 мм — 2 шт. (омеднённые и оцинкованные).
  3. Диодная лампочка на 1,5 В с проводами.

Ход работы:

  1. Просверливаем (не до конца!) отверстия в сахаре.
  2. Аккуратно, чтобы не раздавить рафинад, вкручиваем саморезы.
  3. Подсоединяем проводки лампочки к головкам саморезов.
  4. Смачиваем рафинад уксусом.

, как извлечь электричество из сахара

Разумеется, дело тут не в сахаре, а в химическом процессе окисления меди и цинка. Рафинад является только средством для удержания кислоты. В точке контакта окисляемых поверхностей и кислоты происходит электрохимическая реакция с выделением небольшого количества энергии. Теоретически рафинад можно заменить на плотную губку, но саморезы со временем полностью окислятся и придут в негодность.

Более наглядно и точно этот эффект описан в аналогичном опыте с лимонами.

Электричество из лимона — видеоурок

И совсем народный способ с применением картофеля.

 — как извлечь ток из картошки

Аварийный источник энергии

Описанный выше принцип можно использовать для создания зарядного устройства из подручных средств. Для этого понадобятся простые детали, которые можно обнаружить в остатках материала на выброс после ремонта.

Для создания источника энергии понадобится:

  1. П-образные оцинкованные подвесы для гипсокартона (толщина значения не имеет) — 10 шт.
  2. Тонкая медная проволока — 15 м.
  3. Тонкая х/б ткань — несколько лоскутов, в крайнем случае — туалетная бумага.
  4. Нитки.
  5. Вода, соль.

Ход работы (для одного элемента питания):

1. Обернуть пластины материей (или бумагой) в 2 слоя.

2. Намотать проволоку поверх материи (не густо, материя должна просматриваться).

3. От каждого элемента выпустить медный проводок.

4. Обернуть элемент материей ещё раз и зафиксировать нитками.

5. Смочить подсоленной водой материю и поддерживать в мокром состоянии.

Один элемент выдаёт примерно 0,33 В. Для горения светодиода достаточно 5-ти элементов, для подзарядки телефона 13–14 шт.

Электричество будет вырабатываться, пока идёт реакция окисления, т.е. пока между разными металлами есть электролит (подсоленная вода). Если элемент высох, достаточно его смочить, и реакция возобновится, пока соляной раствор не разъест цинковое покрытие. В идеале лучше использовать полностью цинковые пластины.

Отдельные детали и соль можно взять с собой в поход или держать уже готовые элементы вместе со свечой на случай отключения электричества. При наступлении темноты останется только соединить их вместе и смочить.

Пневматическая зажигалка

У газов, входящих в состав атмосферного воздуха, есть общее свойство — они могут сильно нагреваться при увеличении давления. Этот эффект можно использовать для изготовления «вечной» зажигалки. Способ изготовления потребует навыков слесаря.

Для работы понадобится:

  1. Стержень круглого сечения, возможно из мягкого металла (медь, алюминий) Ø 30 мм и длиной 200 мм.
  2. Стержень стальной Ø 10 мм и длиной 200 мм.
  3. Резиновые кольца из сантехнического набора.
  4. Х/б ткань, фольга.
  5. Доступ к токарному станку.

Ход работы:

  1. Высверлить толстый стержень под диаметр тонкого + 1 мм (цилиндр).
  2. На тонком стержне (поршень) сделать канавки для компрессионных колец.
  3. Высверлить углубление на конце «поршня».
  4. Установить резиновые кольца в канавки.
  5. Ткань завернуть в фольгу и прожечь на огне (трут).

Для того чтобы использовать зажигалку, нужно в углубление поршня уложить трут и вставить его в цилиндр. Затем резко приложить усилие вдоль оси поршня и извлечь его из цилиндра. Трут на конце будет тлеть и из него можно раздуть пламя. Именно этот эффект использован в дизельных двигателях.

Пневматическая зажигалка в действии на видео

Примеры, описанные выше, может быть и не имеют высокой практической ценности, но наглядно демонстрируют возможности получения альтернативной энергии для решения ежедневных задач. В следующих статьях мы рассмотрим другие способы реализации природной и магнитной энергии.

Виталий Долбинов, рмнт.ру

Сделай своими руками
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: