Лазерная и плазменная резка металла отличия

Содержание
  1. Лазерная и плазменная резка металла: отличия, сильные и слабые стороны
  2. Лазерная и плазменная резка металла: отличия и сходства
  3. 2) Плазменные аппараты – это даже не бытовой прибор, который можно использовать в косметологии
  4. Преимущества плазменной и лазерной резки
  5. Плазменная и лазерная резка: отличия, преимущества и недостатки
  6. Лазерная резка
  7. Сравнение фундаментальных факторов
  8.  Сравнение технологических факторов
  9. Сравнение качества обработки
  10. Сравнение факторов
  11. Сравнение безопасности
  12. Что дешевле плазменная или лазерная резка металла
  13. Лазерная и плазменная резка металлов: особенности и отличия
  14. Особенности лазерной резки
  15. Виды лазерной резки
  16. Преимущества и недостатки лазерной резки
  17. Особенности плазменной резки
  18. Виды плазменной резки
  19. Преимущества и недостатки плазменной резки
  20. Сравнение лазерной и плазменной резки
  21. Заключение
  22. Плазменная или лазерная резка — что лучше?
  23. В чем суть лазерной и плазменной резки
  24. Отличие плазменной резки от лазерной по стоимости
  25. Сравнение лазерной и плазменной резки
  26. Технологии лазерной и плазменной резки
  27. Преимущества и недостатки
  28. Основные особенности
  29. Отличие по стоимости
  30. Вывод
  31. Важные навыки оператора по плазменной резке
  32. Ручная плазменная резка и автоматизированная
  33. 10 распространенных ошибок во время резки металла плазмой
  34. Лазерная или плазменная резка металла – что лучше?
  35. Толщина материала
  36. Качество отверстий
  37. Точность реза
  38. Расходные материалы
  39. Производительность
  40. Цена станка и стоимость эксплуатации
  41. Выводы

Лазерная и плазменная резка металла: отличия, сильные и слабые стороны

Лазерная и плазменная резка металла отличия

18.02.2021

Вопросы, рассмотренные в материале:

  • Лазерная и плазменная резка металла: отличия и сходства
  • Преимущества плазменной и лазерной резки
  • Стоимость оборудования и расходников для обоих видов резки
  • Качество результата после плазменной и лазерной резки

Выбирая, что лучше – лазерная и плазменная резка металла, нужно в первую очередь учесть отличия и сходства двух видов. Это важно как для подбора оборудования для собственного производства, так и для заказа раскроя на стороне. Понимание сильных и слабых сторон каждого метода позволит получить качественную продукцию и не выйти за рамки бюджета.

Несмотря на то, что можно встретить мнение о превосходстве лазера над плазмой, корректнее было бы сказать, что все зависит от толщины и типа раскраиваемого металла. В одном случае надо выбрать лазер, для другого подойдет плазма. В нашей статье мы расскажем обо всех особенностях данных технологий и определим, в каких условиях и что лучше применять.

Лазерная и плазменная резка металла: отличия и сходства

В устройство лазерной установки входят три основные части:

  • рабочая (активная) среда – источник излучения лазера;
  • оптический резонатор – зеркало, усиливающее излучение установки;
  • источник энергии – система накачки, создающая условия для возникновения электромагнитного излучения.

Разогрев металла осуществляется на малой площади поверхности. Процесс реза осуществляется либо при температурах плавления, либо при испарении металла. К применению второго варианта прибегают исключительно для резки тонких материалов, так как он является энергетически затратным.

Для облегчения работы в зону реза подается один из следующих газов: гелий, аргон, азот, воздух или кислород. Они выполняют функции поддержки процесса горения металла, сдувания его с зоны плавления, остужения прилегающих поверхностей, повышения глубины и скорости и резки.

По способу использования рабочей среды лазерные установки относятся к одному из таких трех видов, как:

  • Твердотельный. Рабочее тело представляет собой цилиндрический стержень, в состав которого входят неодимовое стекло, гранат алюмо-иттриевый или рубин, легированные иттербием или неодимом. В качестве источника энергии используют газоразрядную лампу-вспышку или полупроводниковый лазер.
  • Газовый. В качестве рабочего тела используется углекислый газ, иногда смешанный с азотом и гелием. По конструкционной разновидности такие лазерные устройства подразделяются на щелевые установки и те, что имеют продольную или поперечную прокачку. Для возбуждения газовой среды подаются электрические разряды.
  • Газодинамический. Рабочим телом служит углекислый газ, разогретый до 1 000–3 000 °К (+726…+2 726 °С), возбуждение которого осуществляется при помощи вспомогательного лазера малой мощности.
  • Особенности плазменной резки.

При плазменных резах используются следующие плазмообразующие газы: смесь водорода с аргоном, сжатый воздух, кислород или азот.

Внутри плазмотрона, к которому обязательно подается охлаждение, газ разогревается до температуры +5 000…+30 000 °С и принимает состояние плазмы: смеси свободных электронов, ионов и нейтральных атомов. В итоге у газа появляется способность проводить электрический ток.

За счет нагрева его объем расширяется в 50–100 раз, и он со значительной скоростью вытекает из плазмотрона. Плазма, воздействуя на металл, начинает его плавление.

В процессе плазменного реза между соплом резака и электродом появляется электрическая дуга, которая образуется при поднесении на близкое расстояние резака к металлу. Это осуществимо благодаря использованию источника питания постоянного тока.

Рекомендовано к прочтению

  • Резка меди лазером: преимущества и недостатки технологии
  • Виды резки металла: промышленное применение
  • Металлообработка по чертежам: удобно и выгодно

Существуют аппараты косвенного или прямого действия. В первом случае (плазменно-струйная резка) дуга образуется внутри резака. Такой способ обработки применяется для резания материалов, не проводящих электрический ток. Во втором (при плазменно-дуговой резке) – она возникает между разрезаемым материалом и катодом плазматрона.

2) Плазменные аппараты – это даже не бытовой прибор, который можно использовать в косметологии

В законе существует лазейка, которая позволяет использовать в медицинской практике приборы, которые относятся к бытовым, а не к медицинским.

Граница между двумя этими категориями очень тонкая, общепринято считать, что всё что не нарушает дермальный слой и не воздействует на кожные и подкожные ткани, можно отнести к бытовым приборам.

Как пример, часто приводятся различные электромеханические тренажеры, которые применяются для всевозможных массажей и похудения в косметологических салонах.

Бытовые приборы не нужно регистрировать в Росздравнадзоре, но необходимо получить экспертное заключение, что прибор является бытовым.

Как мы понимаем, плазмо-лайнеры нарушают как минимум поверхностный слой кожи, поэтому к бытовым их отнести нельзя совершенно! Смысл в дальнейшей дискуссии отпадает.

Преимущества плазменной и лазерной резки

  1. Резка лазерная.
    При лазерной обработке рез получается более точным, чем при применении плазмы. Благодаря правильной настройке он не будет прыгать по всей поверхности металлического листа. Но при резке с помощью плазмы постоянно происходят колебания, очертания углов и вырезов получаются не совсем четкие.

    Особенно это критично для деталей небольших размеров или со сложной формой вырезов. Поэтому для деталей с высокими требованиями качества и точного соответствия проекту принципиально использовать лазер, так как он может четко разрезать металл там, куда его направили, без значительных колебательных движений.

    В отличие от плазменной резки, при лазерном раскрое можно получить более узкие прорези. Для изготовления более четких отверстий при использовании плазмы их диаметр должен превышать толщину листового материала в полтора раза, но при этом быть не меньше 4 мм. Применение лазеров позволяет выполнять отверстия с диаметрами, равными толщине металла, – от 1 мм.

    Это значительно повышает потенциал для проектирования изделий и корпусов, в развертках которых применяется такой способ реза.

    Для лазерной резки свойственны незначительные тепловые деформации. Но если написать программу для обработки без учета элементарных характеристик и свойств применяемого металла, то, теоретически, перегреть деталь можно даже таким методом.

    К примеру, с помощью лазера нельзя производить очень частые и мелкие отверстия для вентиляций – это может привести к перегреву металла. При таком способе раскроя отверстия в вентиляционных решетках необходимо делать более крупными и менее частыми.

    В других случаях деформации от лазера не столь существенны.

Плазменная и лазерная резка: отличия, преимущества и недостатки

Лазерная и плазменная резка металла отличия

Плазменная резка заключается в сквозном проплавленнии металла по линии реза электрической дугой, стабилизированной потоком газа.

В зависимости от плазмообразующего газа и степени обжатия плазменной дуги, ее температура по центру столба составляет 14-50 тысяч градусов.

Возможность резки металла различных толщин зависит от того, насколько может быть растянута плазменная дуга. Последнее зависит от величины напряжения на дуге, степени ее обжатия и типа плазмообразующего газа.

Чем выше напряжение на дуге, тем больше напряженность электрического поля в плазменном столбе и тем больше будет обжат и стабилизированный столб дуги, тем больше будет ее проникающая способность и тем большую толщину можно резать.

Процесс резки осуществляется с помощью режущих головок, подключенных к источнику питания.

Режущие головки (плазмотроны) представляют собой устройство для возбуждения, формирования и направления режущей плазменной дуги.

Для питания плазмотронов используют источники постоянного тока с высоким напряжением холостого хода (> 160 В). Головка подключается к источнику питания таким образом, что на электрод подают отрицательный потенциал, на сопло и изделие — положительный.

В установках применяют преимущественно ступенчатый способ зажигания режущей дуги.

Сначала с помощью блока поджига (осциллятора) возбуждают вспомогательную дугу между электродом и соплом, а когда факел вспомогательной дуги касается изделия, возникает режущая дуга, которая плавит металл.

  1. катодный узел;
  2. изолятор;
  3. катод;
  4. формирующее сопло;
  5. изделие;
  • ИП — источник питания;
  • R – сопротивление балластный;
  • УПД — устройство поджига дуги;
  • С — фильтр защиты источники

Лазерная резка

Это один из современных методов, который заключается в интенсивном воздействии лазерного луча на металл.

Преимущества лазерной резки:

  • может быть достигнута минимальная ширина реза, которая может быть 0,1 мм,
  • отличное качество резки,
  • отсутствие динамических или статических напряжений, которые влияют на материал, благодаря точно направленному лазерному потоку в зону резки.

Полученные края изделий всегда ровные, заусенцы отсутствуют, однако на срезе может остаться след от воздействия больших температур. Если предстоит изготовить «сложное» изделие, то необходимо проводить дополнительную механическую обработку.

Лазерный луч дает возможность резать сталь толщиной до 20 мм. Самый лучший эффект возможен при резрезании металла толщиной 5 мм. Толщина металла при лазерной резке более 20 мм, тоже возможна, однако в данном варианте альтернативой выступает использование газокислородного разрезания.

Главным недостатком резки лазерным лучом является малый КПД самого лазера (не больше 15 %), что не дает возможность резать толстые листы.

Причем необходимо учесть, что не все металлы можно разрезать лазером, например алюминий, титан и высоколегированная сталь имеют большие отбивные свойства, поэтому мощности лазера просто не хватит для резки большой толщины металла.

Сравнение фундаментальных факторов

ПлазменнаяЛазерная
Способ передачигазэнергосветовой луч
Источник энергииисточник токалазерный резонатор
Путь передачи энергиигаз заряженныйоптоволокно, зеркало
Удаление расплавагазовая струягазовая струя большого давления

 Сравнение технологических факторов

ПлазменнаяЛазерная
Технологические операциирезкагравировка, сварка, маркировка, сверление
Уровень автоматизациине большаяполная
Изменение структуры металлаоказывает существенное влияниеоказывает небольшое влияние
Обрабатываемая толщинасущественные толщинысредние толщины

Читайте так же:  Прецизионная резка металла различными видами оборудования

Сравнение качества обработки

Плазменная реЛазерная
Ширина резасредняяминимальная
Неровность кромкинизкаянизкая
Конус кромкинепараллельная кромка с колебанием конусностине существенный
Точность обработкисредняявысокая
Гратне существенноенет
Тепловое воздействиесущественноене существенное

Сравнение факторов

ПлазменнаяЛазерная
Стоимость деталейнизкаянизкая
Вложения средствсредниевысокие

Сравнение безопасности

ПлазменнаяЛазерная
Средства индивидуальной защитысварочные очкизащиты нет
Удаление дыма и токсичных веществвентиляционная системавентиляционная система
Загрязнение оборудованиясредний уровеньочень низкий уровень
Шумсредний уровеньсредний уровень

Что дешевле плазменная или лазерная резка металла

Стоимость на плазменную установку в пять-шесть раз меньше лазерной. Хотя если сравнивать все показатели, то не следует забывать о эксплуатационных издержках.

Сюда включены издержки на электричество, газы и стоимость расходных материалов.

В общую сумму расходов лазерной резки входят:

  • воздух/чистый кислород;
  • азот.

Энергозатраты:

  • расходы на электричество оборудования;
  • электричество для лазера и охладителя.

При плазменной резке нужен кислород/воздух. Электричество расходуется на подключение станка и создание плазмы. В расходные материалы входят:

  • сопло;
  • электроды;
  • защитный экран.

Подводя итоги можно сказать, что купить дешевле — плазменную или лазерную резку, с точностью ответить невозможно. Но если потребуется резка стали до 6 мм, то тогда лучше выбрать лазер. При резке материалов от 6 мм, лучше приобрести плазменный аппарат с ЧПУ.

Лазерная и плазменная резка металлов: особенности и отличия

Лазерная и плазменная резка металла отличия

Лазерную и плазменную резку используют для раскроя металлов,

и в ряде случаев они могут заменять друг друга. Какие это случаи, чем отличаются способы резки и какому из них отдать предпочтение?

Особенности лазерной резки

Лазерные установки состоят из трех основных частей:

  1. Рабочей (активной) среды – источника лазерного излучения.
  2. Источника энергии (системы накачки), создающего условия, при которых начинается электромагнитное излучение.
  3. Оптического резонатора – зеркала, усиливающего лазерное излучение.

Металл разогревается на небольшом участке. Процесс раскроя может идти при температуре расплавления или испарения металла. Второй вариант энергозатратней и применяется только для тонких материалов.

Для облегчения работы в зону резки подается газ: азот, гелий, аргон, кислород или воздух. Он необходим для удаления расплавленного металла, поддержания его горения, охлаждения прилегающей зоны, увеличения скорости и глубины резки.

Процесс лазерной резки можно посмотреть на видео ниже:

Виды лазерной резки

По типу рабочей среды лазеры бывают трех типов:

  1. Твердотельные. В качестве рабочего тела используется стержень из неодимового стекла, рубина или алюмо-иттриевого граната, легированного неодимом или иттербием. Источник энергии – газоразрядная лампа-вспышка или полупроводниковый лазер.
  2. Газовые. Рабочее тело – углекислый газ или его смесь с азотом и гелием. В зависимости от конструкции такие лазеры делятся на устройства с продольной или поперечной прокачкой и щелевые. Возбуждение газовой среды достигается с помощью электрических разрядов.
  3. Газодинамические. Рабочее тело – углекислый газ, нагретый до 1 000–3 000 °К (726–2 726 °С). Он возбуждается с помощью вспомогательного маломощного лазера.

Преимущества и недостатки лазерной резки

У лазерной резки есть ряд достоинств:

  • благодаря отсутствию контакта с поверхностью разрезаемого металла ее используют для работы с легкодеформируемыми или хрупкими материалами;
  • с ее помощью можно изготавливать детали любой конфигурации;
  • экономный расход листового металла за счет более плотной раскладки на листе;
  • высокая скорость и точность;
  • можно резать металлы толщиной до 30 мм.

Недостатками лазерной резки считаются высокое энергопотребление, дорогое оборудование.

Лазерная резка оптимальна для изготовления сложных по конфигурации изделий из тонких металлов

Особенности плазменной резки

Для плазменной резки используют плазмообразующий газ: азот, кислород, смесь водорода с аргоном или сжатый воздух.

В охлаждаемом плазмотроне он нагревается до температуры 5 000–30 000 °С и переходит в состояние плазмы: смеси нейтральных атомов, ионов и свободных электронов. В результате газ приобретает способность проводить электрический ток.

За счет теплового расширения его объем увеличивается в 50–100 раз и он с огромной скоростью вытекает из плазмотрона. Под воздействием плазмы начинает плавиться металл.

Узнать больше о плазменной резке можно из видео ниже:

Виды плазменной резки

При использовании плазменной резки между электродом и соплом резака возникает электрическая дуга. Для этого используют источники питания постоянного тока. Дуга образуется при поднесении резака к материалу.

Различают аппараты прямого или косвенного действия. В первом случае дуга образуется между катодом плазматрона и разрезаемым материалом (плазменно-дуговая резка). Во втором – внутри резака (плазменно-струйная резка). Этот способ обработки удобен для материалов, не проводящих электрический ток.

Преимущества и недостатки плазменной резки

У плазменной резки 4 основных преимущества:

  1. Можно работать со сталями, алюминиевыми и медными сплавами, чугуном и прочими материалами.
  2. Можно изготавливать детали сложной конфигурации.
  3. Режет металл толщиной до 150 мм.
  4. Высокая точность.

К недостаткам плазменной резки относят необходимость механической обработки кромок разрезаемых материалов и конусность резов.

Плазменная резка чаще используется в машиностроении

Сравнение лазерной и плазменной резки

Можно выделить основные различия между лазерной и плазменной резкой.

  • Толщина металла. Это основной параметр, который отличает два способа раскроя. Лазерная резка не имеет конкурентов при работе с металлами толщиной до 6 мм. При большей толщине замедляется скорость работы, и лазерную резку редко используют для раскроя металлов толщиной более 20 мм.Плазменная резка эффективна при толщине материала 20–40 мм. Может использоваться для раскроя меди толщиной до 80 мм, чугуна – до 90 мм, алюминия и его сплавов – до 120 мм, легированных и углеродистых сталей – до 150 мм.
  • Конусность реза. При лазерной резке металла толщиной более 6 мм появляется конусность кромок порядка 0,5°. По этой причине нижняя часть получаемых отверстий имеет увеличенный диаметр.Для плазменной резки этот параметр больше – 3–10°. При выполнении отверстий этим способом их выходной диаметр меньше входного.
  • Температурное воздействие. Лазерная резка характеризуется малой зоной температурного воздействия.Плазменная резка воздействует на металлы высокой температурой, и листы толщиной до 0,5 мм могут покоробиться.
  • Качество резки. По этому параметру лидер – лазерная резка. Для нее характерны стабильный и точный рез, а также отличное качество кромок.При использовании плазменной резки образуется окалина и нужна доработка кромок.

Сравнительные характеристики обоих способов раскроя металлов приведены в таблице ниже:

ПараметрЛазерная резкаПлазменная резка
Ширина резаСтабильна в пределах от 0,2 до 0,375 ммМеняется из-за нестабильности дуги в пределах от 0,8 до 1,5 мм
Точность резаВысокая ± 0,05 ммМеняется в зависимости от износа оборудования в пределах от ± 0,1 до ± 0,5 мм
Конусность резаНе более 1° при толщине металла более 6 ммОт 3° до 10°
Перпендикулярность резаОбеспечиваетсяРез сужается в нижней части, поэтому кромка плавно закругляется
Качество кромокВысокоеНужно удалять окалину
Температурное воздействиеНевысокое на ограниченном участкеВысокое. Тонкие металлы могут покоробиться
ПроизводительностьВысокая для металлов не толще 6 мм. Снижается при увеличении толщины листаВысокая при толщине металла до 40 мм. Снижается при увеличении толщины листа

Заключение

Лазерная резка удобнее при работе с тонколистовым металлом с большим количеством пазов сложной формы. Она позволяет получить чистые и аккуратные резы, поэтому используется для изготовления жетонов, трафаретов, указателей, табличек, декоративных элементов интерьера и деталей для электротехнических изделий.

Плазменная резка оптимальна для работы с металлом средней и большой толщины. Она уступает лазерной по качеству кромок, поэтому применяется в машиностроении или для изготовления строительных деталей и заготовок.

Плазменная или лазерная резка — что лучше?

Лазерная и плазменная резка металла отличия

Что предпочтительнее — плазменная или лазерная резка, зависит от марки и толщины разрезаемых металлов, от требований к точности реза и от финансовых возможностей заказчика. Эти факторы являются решающими, когда необходимо купить оборудование для резки металла.

В чем суть лазерной и плазменной резки

Обе технологии — извечные конкуренты (но никак не антагонисты!). Хотя, при определенных условиях, одна вполне заменит другую. Однако существуют случаи, при которых предпочтения отдаются лазеру или плазме.

При упрощенном рассмотрении лазерная резка осуществляется за счет сфокусированного лазерного луча, который, собственно, является режущим элементом. Во время непрерывной работы он раскаляет металл, в зоне своего присутствия, до температуры плавления. А расплавленный (по сути, жидкий металл), удаляется, подаваемой под высоким давлением, струей газа.

При сублимационной лазерной резке, под воздействием лазерного импульса, в зоне резания листовой металл испаряется.

В плазменной резке теплота, расплавляющая материал, возникает за счет генерации плазменной дуги. Удаление расплава также происходит за счет воздействия плазменной струи на жидкий металл.

За счет сжатия обычной дуги и одновременного вдувания плазмообразующего газа в плазмотроне происходит возникновение плазменной дуги.

Главным отличием лазерной резки металла от плазменной является точность перпендикулярности образуемых, в процессе раскроя, кромок и толщины прорезей. Так, сфокусированный лазерный луч делает линию реза более тонкой. А значит, меньшая зона листа нагревается в процессе резания. Это, в свою очередь, объясняет практически отсутствующую контурную деформацию получаемых заготовок.

Лазерная резка имеет приличную производительность при высочайшей точности получаемых деталей. Она обеспечивает идеальное вырезание небольших, но сложных по конфигурации фигур и высокую точность углов.

Однако данная технология наиболее эффективна при разрезании листов, толщина которых меньше или равна 6 мм. В этом случае на заготовках полностью отсутствует окалина, а кромки деталей идеально гладкие и прямолинейные.

При резке более толстых листов кромки скашиваются до 0,5 градусов. Поэтому диаметры отверстий, полученных лазерной резкой в нижней части, всегда имеют несколько больший размер, чем в верхней. Правда, качество реза и форма всегда остаются безупречными.

Лазерные станки редко применяются для раскроя листов толщиной 20-40 мм. А для более толстых — вообще не используются.

В отличии от лазерного, плазменное оборудование дает более качественный рез при обработке листов:

  • из алюминия и его сплавов (толщиной до 120 мм);
  • из меди (толщиной до 80 мм);
  • из углеродистых и легированных сталей (толщиной до 150 мм);
  • их чугуна (толщиной до 90 мм).

При этом для раскроя тонколистовых металлов (до 0,5 мм) плазменная дуга используется очень редко — из-за высокой температуры в зоне резания может возникнуть коробление контуров заготовок.

Кроме того, в процессе работы на таком оборудовании образуется конусность реза, варьирующая в пределах 3-10 градусов. Поэтому при вырезании отверстий в толстых металлах нижний диаметр меньше входного. Так, круг, вырезанный из 20 миллиметровой стали будет иметь разницу диаметров в 1 мм.

Плазменная резка имеет ограничения по диаметру вырезаемых отверстий. Идеальными получаются отверстия, диаметр которых в 1,5-2 раза больше, толщины разрезаемого листа. При этом образуется небольшая, легко удаляемая, окалина.

Ниже представлена сравнительная таблица функциональности лазерных и плазменных станков:

 Параметры Лазерная резка Плазменная резка
Ширина реза0,2-0,375 ммШирина реза 0,8-1,5 мм
Точность резки±0,05 мм±0,1-0,5 мм Зависит от степени износа расходных материалов
КонусностьМенее 1°3° — 10°
Минимальные отверстияПри непрерывном режиме диаметр примерно равен толщине материала. Для импульсного режима минимальный диаметр отверстия может составлять одну треть толщины материала.Минимальный диаметр отверстий составляет 1,5 от толщины материала, но не менее 4мм.
Внутренние углыВысокое качество угловПроисходит небольшое скругление угла, из нижней части среза удаляется больше материала, чем из верхней
ОкалинаОбычно отсутствуетОбычно имеется (небольшая)
ПрижогиНезаметныПрисутствуют на острых наружных кромках деталей
Тепловое воздействиеОчень малоБольше, чем при лазерной резке
Производительность резки металлаОчень высокая скорость при малых толщинах. Заметно снижается с увеличением толщины металла, продолжительный прожиг больших толщин.Быстрый прожиг; очень высокая скорость при малых и средних толщинах обычно с резким снижением при увеличении толщины.

Отличие плазменной резки от лазерной по стоимости

Решая, что лучше — плазменная или лазерная резка металла, нужно понимать, что цена портальной плазменной установки в 5-6 раз ниже аналогичной лазерной. Однако при сравнении обоих видов оборудования следует учитывать не только стартовую стоимость, но и дальнейшие эксплуатационные расходы.

Сюда относят затраты на электроэнергию, вспомогательные газы и цену расходных материалов. Выбирая, что заказать — плазменную или лазерную резку металла, учтите, что в смету эксплуатационных расходов лазерной резки входят:


Стоимость газов:

  • воздух или чистый кислород — для резки углеродистых сталей;
  • азот — для получения заготовок из алюминия (его сплавов) и коррозионностойких сталей (например, нержавейки).

Энергозатраты:

  • расходы на энергопотребление самой установки;
  • электроэнергия для лазера и охладителя.

Расходные материалы:

  • оптика (внутренняя и внешняя);
  • сопла;
  • фильтры.

В зависимости от интенсивности использования лазерного оборудования,
расходные материалы меняют раз в несколько недель или лет.

Но ответ на вопрос: «Чем отличается плазменная резка от лазерной резки?» был бы не полным без знаний об эксплуатационных расходах на установку плазменной обработки. Поэтому продолжим детально изучать затраты на альтернативное оборудование.

При плазменной резке используют кислород или воздух. Электроэнергия расходуется исключительно на питание самого станка и создание плазмы. Что до расходных материалов, то их не больше, чем в лазерном оборудовании. Так, в этот пункт входят:

  • сопло;
  • электрод;
  • защитный экран.

Для уменьшения затрат в плазморезе можно использовать слаботочные сопла и электроды,
однако это снизит производительность станка, но не уменьшит качество реза.

Такой показатель, как количество отверстий, приходящихся на одну заготовку, снижают часовую стоимость работы плазмы. В этом батле победу одержит лазер, поскольку сопла и электроды, используемые в плазменных агрегатах, рассчитаны на заданное количество прошивок и стартов.

Чем больше отверстий нужно сделать, тем выше эксплуатационные расходы на плазменный станок.

Резюмируя вышеизложенное, можно прийти к следующему выводу: сказать заочно, что выгоднее приобрести — плазменную или лазерную резку, невозможно. Но если требуется раскрой металла до 6 мм, а особенно с большим количеством отверстий, тогда в фаворе будет лазер. При резании материалов от 6 мм, покупайте плазменные аппараты с ЧПУ.

Серия S-WTСерия M30Серия L50Серия L100-COMBI
Цена: от 230 000 руб.Цена: от 470 000 руб.Цена: от 700 000 руб.Цена: от 860 000 руб.

Если вы решили приобрести недорогие станки плазменной резки, обращайтесь в нашу компанию. Менеджеры детально изучат производственные требования и подскажут наиболее рациональную марку станка, необходимого для вашего предприятия. Звоните, нам есть что предложить по качеству, цене и функциональности.

Сравнение лазерной и плазменной резки

Лазерная и плазменная резка металла отличия

Часто, при покупке оборудования для резки металла, мы встаем перед выбором, какой вид резки лучше, плазменный или лазерный? У каждого есть свои преимущества и недостатки и для того, чтобы вы сделали правильный выбор, в этой статье мы подробно разберем каждый.

Технологии лазерной и плазменной резки

Непрерывная резка металла с помощью лазера основана на сконцентрированном лазерном луче, который, по сути, и есть режущий инструмент. Сконцентрированный луч нагревает металл до температуры плавления, а выдаваемый под давлением газ раздвигает его в стороны. Применяя сублимационную резку, жидкий металл в зоне резки, разгоняется за счет импульса лазера.

В случае с плазменной резкой температура плавления достигается за счет генерации плазменной дуги. Раскрой металла происходит также под давлением газа.

Преимущества и недостатки

Основное отличие лазерной резки –  это минимальная деформация заготавливаемых деталей при раскрое металла. Достигается такой результат благодаря тому, что лазерный луч режет тонкой полосой, а значит и нагрев металла минимален.

В итоге производительность такой резки высокая, исполнение  даже самых сложных деталей максимально точное. Лазерный инструмент многопрофильный в своем роде, с его помощью можно не только резать, но и наносить маркировку и разметку.

Но стоит учесть, что лазер прекрасно справляется на толщине металла не более 6 мм, при обработке более толстого материала по краю реза образуется окалина и появляется скос на 0,5 градуса.

Если в ваши планы входит изготовление простых деталей, без лишних отверстий и углов, то производительность плазменной установки в 2-3 раза превзойдет лазерную, при условии одинаковой потребляемой мощности.

А вот плазменная резка идеально подходит для реза толстого металла, толщиной до 20 см:

– алюминий до 12 см;

– чугун до 9 см;

– медные сплавы до 8 см;

– углеродистые стали до 20 см.

Металлы толщиной менее 0,5 см лучше не обрабатывать плазменной резкой, так как происходит деформация деталей. Также учтите, что диаметры вырезаемых отверстий плазменной резкой не всегда получаются идеальными. Наиболее оптимальный вариант диаметра резки тот, который будет в два раза больше толщины самого металла.

Образующаяся при этом окалина по краю легко удаляется. Плазменные установки бывают автоматические и ручные, при необходимости ее можно легко переносить.

Также, процесс плазменной резки не капризный, перед началом работ вам не придется зачищать металл от загрязнений и ржавчины и создавать стерильную чистоту, как в случае работы с лазерным оборудованием.

При работе на плазменной установке нет необходимости проходить специальное обучение, достаточно знать технику безопасности и процесс самой работы, в то время как для работы с лазером требуются квалифицированные знания и не всегда удается найти мастера, хорошо знающего свое дело.

Минус плазменной резки в том, что во время резки металла в воздух выбрасывается большое количество вредных газов, поэтому помещение, где проводятся работы, должно быть оснащено хорошей вентиляцией, а также предусмотрены первичные средства пожаротушения, так как при несоблюдении правил пожарной безопасности возможно возгорание.

Основные особенности

ОсобенностьЛазерные установкиПлазменные установки
Ширина линии разреза, ммНе более 0,4От 0,7 до 1,6
Погрешность резки, ммНе более 0,05От 0,1 до 0,5
Образование конусного срезаНе более 1⁰От 3⁰ до 10⁰
Минимальный диаметр При непрекращающемся процессе диаметр соответствует толщине металла. При точечном воздействии диаметр  составит 1/3 толщины металла.Минимальный диаметр в 2 раза больше толщины листа, но не меньше 0,4 см.
Внутренние углыОтличное качествоНебольшой срез угла, нижняя часть срезается больше верхней.
Наличие окалиныНе наблюдается.Имеется в небольшом количестве.
Наличие прижоговНе наблюдаются.Небольшие, по краю кромки снаружи
Воздействие высоких температурМинимальное.Среднее.
ПроизводительностьМаксимальная при минимальной толщине листа.Возрастает в соответствии с увеличением толщины листа.

Отличие по стоимости

Несомненно, плазменная установка стоит значительно дешевле лазерной, но не стоит опрометчиво делать свой выбор, учтите все расходы на материалы при дальнейшей эксплуатации оборудования.

При эксплуатации лазерного оборудования вам понадобятся следующие материалы:  азот, кислород, электрическая энергия, а также  сопла, оптика и фильтра, которые меняются достаточно редко, если вы не занимаетесь делом профессионально и не нагружаете установку по максимуму.

Для плазменной установки в принципе также используется воздух и азот, электричество только для самого оборудования, из расходных материалов: сопло, электроды и защитный экран. В части приобретения расходных материалов, несомненно, выигрывает лазерное оборудование, так как электроды рассчитаны на определенное количество работ.

Однако, в случае выхода из строя расходников или необходимости проведения технического обслуживания деталей, стоимость для лазерного оборудования будет выше стоимости для плазменного в 3-4 раза. Кроме этого, в случае сервисного обслуживания или ремонта потребуется максимально точная настройка лазера, а это услуги высококвалифицированного специалиста, цены на которые также достаточно высоки.

Вывод

Исходя из вышесказанного, можно сделать вывод, что если вы планируете работать с металлом толщиной не более 3 мм, и вам потребуется огромное количество отверстий, то лучше приобрести лазерную установку.

Если в Ваших планах работать с металлом со средней толщиной от 5 мм, а детали не будут отличаться сложностью, однозначно можно рекомендовать плазменную установку. В данном случае вы получите высокую производительность и минимум затрат.

Прекрасным решением будет оптимизация существующих технологий с перестройкой процесса для эффективного использования как плазменного, так и лазерного оборудования.

Важные навыки оператора по плазменной резке

Все более востребованной сегодня становится плазменная резка металла, которая стала современной альтернативой обычной газовой. Производительность работы существенно возрастает, а рабочий процесс упрощается. Однако для правильного и эффективного использования плазмотрона специалист должен обладать всеми необходимыми навыками.

…Читать подробнее

Ручная плазменная резка и автоматизированная

Плазменная резка, как метод раскроя металлов, на сегодняшний день набирает все большую популярность и широкое распространение среди предприятий металлообрабатывающей отрасли. Резка осуществляется как при помощи портативных переносных аппаратов, так и посредством автоматизированного оборудования, когда плазменный резак (плазмотрон) устанавливают на станок с ЧПУ

…Читать подробнее

10 распространенных ошибок во время резки металла плазмой

Собирая целиком систему плазменной резки, можно столкнуться с очень сложной задачей. Задача включает в себя выбор источника питания, который генерирует поток плазмы, систему ЧПУ, программное обеспечение, системы вентиляции, а также стол для резки и портальная система.

…Читать подробнее

Лазерная или плазменная резка металла – что лучше?

Лазерная и плазменная резка металла отличия

Нередко, задумываясь о приобретения нового оборудования для обработки металла мы задаем себе вопрос, какому типу технологий отдать предпочтение: лазерной или плазменной резке. Несмотря на то, что обе технологии являются конкурирующими, все же есть ряд факторов, которые могут помочь сделать целесообразный выбор.

Зная специфику Вашего бизнеса и задачи, на решение которых он заточен, к концу статьи Вы будете обладать пониманием, что для вас подходит более всего.

Но, обо всем по порядку.

В данной статье мы постараемся обозначить основные особенности лазерной и плазменной резки. Но для начала, определим основное отличие лазерной и плазменной резки.

В качестве инструмента при лазерной резке очень упрощенно используется сфокусированный лазерный луч. При непрерывном режиме работы лазерный луч нагревает обрабатываемый материал до температуры плавления, полученный расплав удаляется струей газа под высоким давлением. При сублимационной лазерной резке металла материал под воздействием лазерного импульса испаряется в зоне резки.

Рис. 1. Резка лазером.

Плазменная резка заключается в проплавлении разрезаемого металла за счет теплоты, генерируемой сжатой плазменной дугой, и интенсивном удалении расплава плазменной струей. Плазменная дуга получается из обычной в специальном устройстве – плазмотроне – в результате ее сжатия и вдувания в нее плазмообразующего газа.

Толщина материала

Лазерная резка особенно эффективна для стали толщиной до 20 мм, обеспечивая высокие качество и точность при сравнительно большой скорости разрезания.

При лазерной обработке на тонколистовом материале не остается окалины, что позволяет сразу передавать детали на следующую технологическую операцию.

Кромки реза у листов толщиной до 4 мм и меньше остаются гладкими и прямолинейными, а у листов большей толщины кромки имеют некоторые отклонения со скосом примерно 0,5°.

Плазменная резка, по сравнению с лазерной, эффективна при обработке значительно более широкого по толщине диапазона листов при относительно хорошем качестве реза.

Данный вид обработки экономически целесообразен для резки алюминия и сплавов на его основе толщиной до 120 мм; меди толщиной до 80 мм; легированных и углеродистых сталей толщиной до 150 мм; чугуна толщиной до 90 мм.

На материалах толщиной 0,8 мм и меньше, использование плазменной резки находит ограниченное применение.

Качество отверстий

Диаметры отверстий, вырезанных лазером, имеют в нижней части несколько больший диаметр, чем в верхней, но остаются круглыми и хорошего качества. При непрерывном режиме диаметр примерно равен толщине материала. Для импульсного режима минимальный диаметр отверстия может составлять одну треть толщины материала.

У станков плазменной резки при вырезании отверстий, особенно на больших толщинах, наличие конусности уменьшает диаметр нижней кромки отверстия, на детали толщиной 20 мм разница диаметра входного и выходного отверстия может составить 1 мм.

Минимальный диаметр отверстий составляет 1,5 от толщины материала, но не менее 4мм. Выраженная склонность к эллиптичности, (возрастает с увеличением толщины материала).

Точность реза

Лазерная резка, в отличие от плазменной, обеспечивает получение более точных по перпендикулярности кромок и более узких прорезей применительно к характерному для процесса диапазону толщин.

Сфокусированное лазерное излучение позволяет нагревать достаточно узкую зону обрабатываемого материала, что уменьшает деформации при резке. При этом получаются качественные и узкие резы со сравнительной небольшой зоной термического воздействия.

В итоге, высокая точность получаемых деталей, особенно при образовании вырезов, небольших фигур сложной конфигурации и четко очерченных углов.

При плазменном способе реза присутствует кратковременный термический обжиг кромки разрезаемого металла. Все это приводит к ухудшению качества деталей. Чаще всего на этих деталях присутствует небольшая окалина, которая легко удаляется.

Расходные материалы

К числу основных газов, используемых при лазерной резке, относятся воздух и кислород (при резке углеродистой стали) или азот (при резке коррозионно-стойкой стали и алюминия).

Энергетические расходы включают расходы на электроэнергию, потребляемую самой установкой, электроэнергию для лазера и охлаждающего устройства, а к числу расходуемых компонентов относятся внутренняя и внешняя оптика, линзы, сопла, фильтры.

Периодичность замены расходных компонентов, используемых в установке лазерной резки, составляет от нескольких недель до нескольких лет, в зависимости от многих параметров.

При осуществлении плазменной резки в основном используют воздух и кислород. К энергетическим расходам здесь относят расходы на электроэнергию для создания плазмы и для питания самой установки для плазменной резки. В числе расходуемых компонентов – сопло, электрод, рассекающее кольцо, крышки, керамическая направляющая и экран.

Производительность

Такой показатель, как количество вырезаемых отверстий на одну деталь, оказывают влияние на часовую стоимость эксплуатации плазменной установки в большей степени, чем на тот же показатель для лазерной, поскольку расходуемые компоненты, например, сопла и электроды рассчитаны на определенное количество стартов или прошивок. Чем больше отверстий требуется прошивать в детали для ее резки, тем выше стоимость часа работы плазменной установки.

Цена станка и стоимость эксплуатации

Немаловажной характеристикой является стоимость установок.

Станки плазменной резки дешевле лазерных, но при сравнении стоимости эксплуатации установок следует учитывать ряд одинаковых или аналогичных параметров, существующих при работе этих установок и влияющих на эксплуатационные расходы. Это относится, в первую очередь, к стоимости расходных материалов, а также электроэнергии и вспомогательных газов.

Следует учитывать, что эксплуатационные расходы для обоих типов резки имеют широкий разброс и во многом определяются геометрическими параметрами заготовки, числом отверстий в ней, видом и толщиной разрезаемого материала.

Рис. 3. Сравнение двух технологий реза металла.

Выводы

Если для вас важна высокая точность исполнения, скорость, вы работаете с небольшими толщинами, то вне сомнения, мы рекомендуем вам сделать выбор в пользу станка лазерной резки металла.

Сделай своими руками
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: