Магнитострикционный излучатель своими руками

Содержание
  1. Повышение мощности акустических противонакипных устройств
  2. Введение
  3. Магнитострикционные преобразователи
  4. Варианты развития магнитострикционных преобразователей
  5. Заключение
  6. Магнитострикционный излучатель своими руками – Справочник металлиста
  7. Что такое ультразвуковая ванна?
  8. Схема устройства
  9. Сфера применения ультразвука
  10. Как собрать ультразвуковые ванны своими руками?
  11. Что надо знать при работе с ультразвуковыми ваннами?
  12. Ультразвук. Узнать больше о Ультразвук. Жмите
  13. Источники ультразвука
  14. Приемники ультразвука
  15. Где применяются ультразвуковые волны?
  16. Очистка ультразвуком
  17. Механическая обработка хрупких и сверхтвердых материалов
  18. Применение ультразвука в радиоэлектронике
  19. Использование ультразвука в медицине
  20. Применение ультразвука в хирургии
  21. Исследование внутренних органов
  22. Применение ультразвука в стоматологии
  23. Как сделать магнитострикционный излучатель своими руками: описание, схема и рекомендации
  24. Кольцевая модификация
  25. Устройство с яром
  26. Модель с двойной обмоткой
  27. Устройства для эхолотов
  28. Модификации для рыболокаторов
  29. Модели низкого волнового сопротивления
  30. Устройства высокого волнового сопротивления
  31. Стержневые устройства
  32. Модели с однопереходными конденсаторами
  33. Электромагнитный импульс высокой мощности своими руками. Как сделать магнитострикционный излучатель своими руками: описание, схема и рекомендации. Что нужно для сборки
  34. Как это работает
  35. Можно ли защититься?
  36. об электромагнитной бомбе

Повышение мощности акустических противонакипных устройств

Магнитострикционный излучатель своими руками

П.А. Панфиль, директор; А.Г. Андреев, главный инженер, ООО «Кольцо-энерго»; А.Н. Митюряев, директор, ООО НПП «Агроприбор»

Введение

Воздействие ультразвука на различные технологические процессы широко используются во многих областях, в том числе и в теплоэнергетике, где отлично зарекомендовали себя современные акустические (ультразвуковые) противонакипные устройства.

Дальнейшее развитие ультразвуковой технологии предотвращения образования накипи лежит, на наш взгляд, в совершенствовании ультразвуковых преобразователей электромагнитных колебаний, которые являются основным элементом конструкции прибора.

Магнитострикционные преобразователи

Главным элементом любого акустического противонакипного устройства является излучатель ультразвука, который преобразует электромагнитные колебания в механические ультразвуковые и передаёт их поверхности оборудования, которое необходимо защитить от отложений.

Преобразователь получает от генератора по кабелю электрические импульсы с несущей частотой от 18 до 25 кГц. Этот электрический сигнал преобразуется сердечником, выполненном из специальных сплавов, в механические колебания той же частоты – таким образом генерируется ультразвук.

А поскольку излучатель приварен к защищаемому агрегату и представляет с ним единое целое, ультразвуковые колебания возбуждаются во всей конструкции теплообменника или котла, распространяются во всей теплообменной поверхности и «переизлучаются» в воду.

Таким образом, в металле и воде создаются непрерывные микроколебания с амплитудой в несколько микрон, которые безопасны для сварочных и вальцовочных соединений, но разрушительны для карбоната кальция и других твёрдых отложений.

В противонакипных устройствах, как правило, применяются магнитострикционные преобразователи, (магнитострикция (от лат. strictio – сжатие, натягивание) – это изменение формы и размеров тела при его намагничивании. – Прим. ред.

), выполненные из ферромагнитных металлов и сплавов: внутри излучателя находится сердечник из магнитострикционного сплава, обладающего способностью менять свои размеры под действием электрического тока, проходящего по обмотке сердечника.

Сердечник припаян к стальному наконечнику, которым излучатель приваривается к защищаемому оборудованию.

Наиболее эффективным для использования в качестве сердечника считается пермендюр – сплав кобальта с железом и ванадием – как материал с прекрасными магнитострикционными свойствами.

Магнитострикционные преобразователи не только сложны в производстве, но и требуют для своего возбуждения мощного токового сигнала. Что требует, во-первых, соответствующего генератора, а во-вторых, ограничивает длину соединительного кабеля.

Возникает резонный вопрос – почему бы не использовать в противонакипных устройствах преобразователи, сделанные из пьезокерамики? Пьезокерамика представлена на рынке в большом разнообразии, преобразователи из керамики сравнительно дёшевы, компактны и возбуждаются сигналом не тока, а напряжения, что снимает ограничения на длину кабеля от генератора к излучателю ультразвука. Но здесь есть один нюанс.

Дело в том, что амплитуда колебаний, переданная нагрузке пьезокерамическими преобразователями, сильно зависит от присоединённой массы нагрузки. Таково физическое свойство пьезокерамики: пьезокерамический преобразователь, работающий на большую присоединённую массу, очень плохо передаёт нагрузке акустическую энергию.

Поэтому для создания ультразвуковых колебаний в кожухотрубных теплообменниках и котлах магнитострикционные преобразователи намного более эффективны, поскольку отлично излучают ультразвук в массивные крупногабаритные конструкции.

А вот для защиты от накипи пластинчатых теплообменников, где излучение производится в воду, можно использовать излучатели ультразвука на базе пьезокерамики (рис. 1).

Рис. 1. Магнитострикционный (вверху) и пьезокерамический (внизу) преобразователи.

Варианты развития магнитострикционных преобразователей

Одной из основных характеристик, определяющих эффективность работы магнитострикционных преобразователей ультразвука (УЗ) является их излучаемая мощность. Её повышение достигается различными способами, каждый из которых имеет свои границы применения.

Увеличение силы тока, протекающего по обмотке преобразователя, ограничено сечением проводов обмотки, разумными пределами потребляемой электрической мощности задающим генератором, температурными режимами работы излучателей УЗ.

Применение волноводных концентраторов с большими коэффициентами усиления ограничено минимально допустимым диаметром торца волновода – в излучателях, применяемых в большинстве УЗ устройств, он составляет около 25 мм.

Полная излучаемая мощность W при поршневом излучении равна

W = 1/2ρ ∙ с ∙ V2 ∙ S,

где V – амплитуда колебательной скорости на излучающей поверхности, S – площадь излучающей поверхности. Очевидно, увеличение площади сечения пакета преобразователя приводит к увеличению излучаемой им мощности УЗ колебаний. В магнитострикционных преобразователях обычно применяются пакеты размером 30×30 мм (рис. 2 (слева)).

Увеличение площади сечения пакета преобразователя до 40×40 мм приводит к увеличению мощности излучения УЗ в

W40 / W30 = S40 / S30 = 1,78 раз.

Достигаемая при этом излучаемая мощность достаточна для эффективной работы УЗ устройств, использующих магнитострикционные излучатели.

Дальнейшее увеличение площади сечения пакета преобразователя вряд ли целесообразно, так как при этом необоснованно увеличивается и стоимость магнитострикционного материала, используемого при наборе пакета преобразователя, и размеры излучателя УЗ.

Применение излучателей с размерами сечения пакета 40×40 мм является наиболее удачным по техническим характеристикам и стоимости изготовления (рис. 2 (справа)).

Рис. 2. Магнитострикционные излучатели ультразвука с пакетом 30х30 мм (слева) и 40х40 мм (справа).

Другим фактором, влияющим на мощность излучения магнитострикционных преобразователей, а значит на эффективность их работы, служит сочетание конструктивных особенностей излучателя УЗ и способа возбуждения колебаний, формой электрических импульсов, поступающих на обмотку преобразователя с задающего генератора.

Излучатель УЗ состоит из преобразователя, волновода и защитного кожуха. Преобразователь, представляющий собой пакет пластин из магнитострикционного материала, припаян к волноводу. Геометрия и преобразователя, и волновода рассчитана на одну рабочую резонансную частоту, которая наиболее эффективна в конкретном технологическом процессе.

Но, кроме основной частоты, в конструкции излучателя присутствуют и другие резонансы, которые являются паразитными.

И если возбуждение УЗ колебаний в пакете преобразователя осуществлять, к примеру, видеоимпульсом, то, кроме основной рабочей частоты, возбуждаются и колебания на паразитных резонансных частотах, что приводит к распределению полной излучаемой мощности по частотным составляющим. И, как следствие, к уменьшению излучаемой мощности на рабочей частоте.

Если же возбуждение колебаний в пакете преобразователя осуществляется радиоимпульсом с набивкой заданной рабочей частоты, то в колебательной системе (пакет-волновод-кожух-нагрузка) возникают вынужденные колебания заданной частоты, амплитуда которых усиливается за счёт резонансной конструкции излучателя.

Частота набивки радиоимпульса выполняется подстраиваемой, для максимально точного соответствия её основному рабочему резонансу излучателя УЗ.

Применение радиоимпульса для возбуждения колебаний пакета преобразователя позволяет устранить потери полезной излучаемой мощности УЗ колебаний и увеличить амплитуду колебаний на заданной частоте.

Кроме того, что паразитные резонансы колебательной системы излучателя приводят к уменьшению мощности излучаемого УЗ на рабочей частоте, к тому же располагаются они и в звуковом диапазоне частот, из-за чего работа УЗ устройств сопровождается характерным слышимым шумом.

Однако щёлканье работающего магнитострикционного преобразователя можно сделать более тихим, если отделить кожух от волновода резиновыми или фторопластовыми прокладками (рис. 3). Уровень шума такого излучателя снижается почти на 10 дБ и он издаёт только глухое постукивание. Но в данном случае требуется предусмотреть заземление кожуха, теперь электрически изолированного от волновода.

Рис. 3. «Тихий» излучатель без обмотки с резиновыми прокладками

Всё вышесказанное относится к магнитострикционным излучателям, конструкция которых традиционно реализует одностороннее полезное излучение. Нагрузка на пакет преобразователя осуществляется с одного его торца, а противоположный торец совершает холостые колебания, не используемые при работе излучателя.

Это обусловлено способом передачи УЗ колебаний рабочей нагрузке, максимальным его упрощением – путём сварного или резьбового соединения прямолинейного волновода с нагрузкой (хотя, конечно, можно реализовать экзотические способы передачи колебаний с обоих торцов пакета преобразователя, например, применяя изогнутые волноводы).

Но существуют области применения УЗ устройств, где возможно использовать излучение обоих торцов преобразователя – при применении «погружных излучателей УЗ», для формирования ультразвуковых колебаний в жидких средах.

Обычно для этого используют конструкции, где один или несколько преобразователей жёстко соединяются с пластиной, служащей излучающей поверхностью, закрываются герметичной крышкой, второй же торец преобразователя не используется для излучения в среду.

Сейчас уже нашими специалистами разработан магнитострикционный погружной излучатель УЗ, в котором полезно используются колебания обоих торцов пакета преобразователя.

Отличительная особенность этого излучателя – закрепление торцов преобразователя на двух пластинах, что приводит к двукратному увеличению площади излучающей поверхности.

Конструктивное решение позволяет увеличить мощность излучаемых колебаний без повышения потребляемой электрической мощности и при тех же размерах пакета преобразователя УЗ.

Заключение

Для защиты от накипи промышленного теплообменного оборудования востребованы мощные и компактные магнитострикционные излучатели российского производства.

Для предотвращения отложений в пластинчатых теплообменниках применяются преобразователи с пакетом 30×30 мм. Для крупногабаритных подогревателей и конденсаторов оптимальны преобразователи с пакетом 40×40 мм. Опытным путём установлено, что дальнейшее увеличение площади пакета нецелесообразно.

Базовые характеристики современных модификаций излучателей оптимальны для предотвращения накипи: резонансная частота ультразвука – 22 кГц, потребляемая электрическая мощность – 100 Вт.

Последние разработки отличаются конструктивным совершенством, большей эффективностью преобразования электрического сигнала в ультразвуковой, более чистым сигналом без паразитных гармоник, более высокой рабочей температурой: 220 °С вместо ранее заявленных 180 °С.

Более длинный и тонкий клинообразный наконечник упрощает приварку излучателя ультразвука к защищаемому оборудованию.

Рис. 4. Акустическое противонакипное устройство, установленное на пластинчатом теплообменнике.

Важнейшее следствие применения противонакипных устройств (рис. 4) – это интенсификация теплообмена, что влечёт за собой уменьшение расхода теплоносителя. А это, в свою очередь, ведёт к уменьшению тепловых и гидравлических потерь, экономии энергоносителей и электроэнергии. Кроме того, внедрение противонакипных ультразвуковых устройств позволяет:

ü применять пластинчатые теплообменники на жёсткой воде;

ü использовать теплообменники с меньшей площадью теплообменной поверхности;

ü снизить температуру обратной сетевой воды в среднем на 5 °С.

Магнитострикционный излучатель своими руками – Справочник металлиста

Магнитострикционный излучатель своими руками

Времена научно-технического прогресса не проходят даром. Техника работает, выходит из строя, загрязняется. Иногда продлить срок службы изделия можно простой очисткой деталей от накопившейся грязи. Поэтому всё большую популярность набирают ультразвуковые ванны.

Основное место использования этих приборов — автосервис. Но и во многих других отраслях они бывают необходимы. В мастерских по ремонту компьютеров такая штука может пригодиться для очистки головок засохших картриджей от принтеров.

В больницах с помощью ультразвуковой ванночки можно очищать хирургические и оптические инструменты, а также приборы. Да и дома бывает необходимость иметь такое приспособление всегда под рукой.

Вот и возникает у многих людей вопрос: где взять схему ультразвуковой ванны, чтобы сделать её своими руками?

Что такое ультразвуковая ванна?

Звуковые высокочастотные волны, которые не может распознать человеческий слух, называются ультразвуком. Частота таких волн начинается от 18 килогерц.

При воздействии ультразвуком на жидкости появляется большое количество маленьких пузырьков. Повышая давление можно добиться процесса кавитации — когда пузырьки начинают взрываться.

Чем выше давление, тем большего размера могут быть пузырьки. Явление кавитации и взяли за основу изобретатели ультразвуковой ванны.

Как следует из названия, ультразвуковая ванна нужна для очистки предметов от загрязнения ультразвуком. Сама по себе ванна — это чаша из нержавеющей стали. Объём такой чаши составляет один литр.

Исходя из этого уже понятно, что очищать в ванночке можно небольшие предметы. Но это если речь идёт о бытовом аппарате. Для промышленных нужд объем ванны может достигать несколько десятков литров.

Диапазон волн, применяемый в установке от 18 до 120 килогерц.

Схема устройства

Главным элементом по праву можно назвать излучатель, который необходим для преобразования колебаний электрического тока в механические. Механические колебания через стенки ёмкости, попадая в жидкую среду, воздействуют на очищаемый предмет.

Чтобы излучатель мог производить описанный процесс, необходим генератор частот. Генератор формирует ультразвук при помощи электрических колебаний, которые поступают в излучатель.

Для улучшения эффекта очистки металлическая ёмкость постоянно подогревается. Под чашей расположены нагревательные элементы, поддерживающие постоянную температуру жидкости. Так как излучатель работает импульсно, то в промежутках между импульсами надо поддерживать стабильные условия происходящих процессов.

Процесс очистки происходит следующим образом:

  • в специальную ёмкость наливается очищающий раствор;
  • в раствор опускается предназначенный для очистки предмет;
  • включается прибор, генерирующий волны, в результате этого на поверхности должны появиться пузырьки;
  • эти пузырьки воздействуют на деталь так, что как бы съедают грязь. Причём происходит это даже в самых труднодоступных местах.

Сфера применения ультразвука

Сегодня спектр применения ванночек на основе ультразвука достаточно широк. Если в промышленности принцип ультразвука известен давно, то теперь список областей, где он используется постоянно растёт. С точностью можно сказать, что чистка ультразвуком стала родной для следующих отраслей промышленности:

  • ювелиры взяли этот метод себе на вооружение. Ювелирное дело то же трудоёмкое производство, особенно если надо почистить камни или старые изделия;
  • всё что связано с оптикой эффективно поддаётся очистке в ёмкостях с очищающим раствором;
  • кремниевые пластины и платы в электронной промышленности, очищаются подобным методом;
  • в химической промышленности кавитацией увеличивают скорость реакций;
  • автопром и типография промывают детали и узлы механизмов;
  • оказалось, что таким способом очень хорошо очищаются мобильные телефоны, ведь там столько труднодоступных мест. Даже печатные головки принтеров, которые не удавалось ранее очистить, после частотного воздействия становятся как новые.

Как собрать ультразвуковые ванны своими руками?

Можно купить технику с ультразвуком, а можно сделать самому по схеме. Необходимость собрать ультразвуковые ванны своими руками возникает потому, что на рынке в основном представлены китайские модели. Если что и попадается поприличней, то цена в несколько раз превышает китайский аналог.

Чтобы самому собрать ультразвуковой прибор для очистки, нужно хоть немного разбираться в физике. Тем, кто в школе собирал радиоприёмники, будет намного проще сделать своими руками такой прибор.

Итак, приступаем к сборке ультразвуковой ванны. В схеме прибора, собранного собственноручно должны присутствовать следующие компоненты:

  • стальной каркас для крепления в нём всех элементов;
  • насос для нагнетания жидкости в ванну;
  • импульсный трансформатор для повышения напряжения;
  • любой сосуд из керамики;
  • магниты от старого динамика;
  • катушку с ферритовым стержнем;
  • небольшая трубка из стекла или пластмассы;
  • и, конечно же, жидкость, которая будет использоваться в работе.

Если все детали в наличии, можно приступать к сборке. Пошаговая сборка ультразвуковой ванны своими руками, особенно когда есть некоторые навыки, занимает всего-навсего в несколько этапов.

  1. На пластмассовую (стеклянную) трубку наматывается катушка. Ферритовый стержень не надо никуда убирать или приматывать: он так и остаётся висеть. Один конец ферритового стержня должен быть свободным. На него одевается магнит от динамика. Таким образом, получается магнитострикционный преобразователь или излучатель ультразвука.
  2. Керамический сосуд крепится в стальном каркасе. Это и будет нашей ванночкой.
  3. В дне керамического сосуда сверлится отверстие, в которую вставляется получившийся магнитострикционный преобразователь.
  4. В ванночке (керамическом сосуде) делаются два отверстия для залива и слива жидкости.
  5. В зависимости от того какой объём нужен в ультразвуковой ванне, своими руками можно установить и насос. В больших ёмкостях насос придётся ставить для ускорения поступления жидкости.
  6. Так как напряжение в сети постоянно, понадобиться импульсный трансформатор. Такой трансформатор можно найти в старом компьютере или телевизоре.
  7. Схема готова — осталось её испытать. Если возникнут недоделки их сразу же можно устранить.

Что надо знать при работе с ультразвуковыми ваннами?

Ультразвуковые ванны своими руками можно собрать и они будут работать. Но, как и в случае с изделиями заводской сборки, не стоит забывать о некоторых правилах.

  1. В первую очередь соблюдать правила электрической и пожарной безопасности.
  2. Перед началом работ обязательно провести внешний осмотр агрегата, тем более, если он сделан самостоятельно.
  3. Во время работы установки нельзя руками трогать жидкость или очищаемую деталь. Если такое необходимо сделать, то обязательно на руках должны быть резиновые перчатки.
  4. Без жидкости в ванночке работать с установкой нельзя. Собранные ультразвуковые ванны своими руками имеют открытый ферритовый стержень, который сам по себе очень хрупкий. При отсутствии рабочей среды ферритовый стержень просто разлетится на куски. В этом случае можно пострадать и от осколков, и от поражения электрическим током.
  5. Если проводится чистка мелких изделий, то их лучше всего поместить в ванночку в стакане с чистящей жидкостью, а саму ёмкость заполнить простой водопроводной водой.

Ультразвук. Узнать больше о Ультразвук. Жмите

Магнитострикционный излучатель своими руками

В последнее время широкое распространение в разных областях науки, техники и медицины получило использование ультразвука.

Что же это такое? Где применяются ультразвуковые колебания? Какую пользу они способны принести человеку?

Ультразвуком называют волнообразные колебательные движения с частотой более 15-20 килогерц, возникающие под воздействием окружающей среды и неслышимые для человеческого уха. Ультразвуковые волны легко фокусируются, что увеличивает интенсивность колебаний.

Источники ультразвука

В природе ультразвук сопровождает различные естественные шумы: дождь, грозу, ветер, водопад, морской прибой. Его способны издавать некоторые животные (дельфины, летучие мыши), что помогает им обнаруживать препятствия и ориентироваться в пространстве.

Все существующие искусственные источники ультразвука подразделяют на 2 группы:

  • генераторы – колебания возникают в результате преодоления препятствий в виде газа или жидкостной струи.
  • электроакустические преобразователи- трансформируют электрическое напряжение в механические колебания, что приводит к излучению акустических волн в окружающую среду.

Приемники ультразвука

Низкие и средние частоты ультразвуковых колебаний в основном воспринимаются электроакустическими преобразователями пьезоэлектрического типа. В зависимости от условий использования различают резонансные и широкополосные устройства.

Чтобы получить характеристики звукового поля, которые усреднены по времени, применяют термические приемники, представленные термопарами или термисторами, которые покрывают веществом, обладающим звукопоглощающими свойствами.

Оптические методы, в число которых входит дифракция света, способны оценить интенсивность ультразвука и звуковое давление.

Где применяются ультразвуковые волны?

Ультразвуковые волны нашли применение в разнообразных областях.

Условно сферы использования ультразвука можно разделить на 3 группы:

  • получение информации;
  • активное воздействие;
  • обработка и передача сигналов.

В каждом случае используется определенный диапазон частот.

Очистка ультразвуком

Ультразвуковое воздействие обеспечивает качественную очистку деталей. При простом полоскании деталей на них остается до 80% грязи, при вибрационной чистке – близко 55%, при ручной – около 20%, а при ультразвуковой – менее 0,5%.

Детали, обладающие сложной формой, можно избавить от загрязнений только при помощи ультразвука.

Используются ультразвуковые волны и при очистке воздуха и газов. Ультразвуковой излучатель, помещенный в пылеосадочную камеру, увеличивает результативность ее действия в сотни раз.

Механическая обработка хрупких и сверхтвердых материалов

Благодаря ультразвуку стала возможной сверхточная обработка материалов. С его помощью делают вырезы различной формы, матрицы, шлифуют, гравируют и даже сверлят алмазы.

Применение ультразвука в радиоэлектронике

В радиоэлектронике нередко возникает необходимость задержать электрический сигнал по отношению к какому-то другому сигналу.

Для этого стали пользоваться ультразвуковыми линиями задержки, действие которых основано на преобразовании электрических импульсов в ультразвуковые волны.

Также они способны преобразовывать механические колебания в электрические. В соответствии с этим линии задержки могут быть магнитострикционными и пьезоэлектрическими.

Использование ультразвука в медицине

Применение ультразвуковых колебаний в медицинской практике основано на возникающих в биологических тканях эффектах во время прохождения сквозь них ультразвука.

Колебательные движения оказывают на ткани массажирующее действие, а при поглощении ультразвука они локально нагреваются. В то же время в организме наблюдаются различные физико-химические процессы, не вызывающие необратимых изменений.

В результате ускоряются обменные процессы, что благоприятно сказывается на функционировании всего организма.

Применение ультразвука в хирургии

Интенсивное действие ультразвука вызывает сильное нагревание и кавитацию, что нашло применение в хирургии. Использование фокусного ультразвука при проведении операций дает возможность осуществлять локальное разрушающее действие в глубинных участках организма, в том числе в области головного мозга, не нанося вреда близлежащим тканям.

Хирурги в своей работе используют инструменты с рабочим концом в виде иглы, скальпеля или пилы. При этом хирургу не требуется прикладывать усилий, что уменьшает травматичность процедуры. В то же время ультразвук оказывает анальгезирующее и кровоостанавливающее действие.

Воздействие ультразвуком назначается при обнаружении в организме злокачественного новообразования, что способствует его разрушению.

Ультразвуковые волны обладает и антибактериальным действием. Поэтому они применяются для стерилизации инструментов и лекарственных средств.

Исследование внутренних органов

С помощью ультразвука осуществляют диагностическое обследование органов, расположенных в брюшной полости. Для этого применяют специальный аппарат.

Во время ультразвукового исследования удается обнаружить различные патологии и аномальные структуры, отличить доброкачественное новообразование от злокачественного, обнаружить инфекцию.

Ультразвуковые колебания используют при диагностике печени. Они позволяют определить болезни желчных потоков, исследовать желчный пузырь на присутствие в нем камней и патологических изменений, выявить цирроз и доброкачественные болезни печени.

Широкое применение нашло ультразвуковое исследование в области гинекологии, особенно при диагностике матки и яичников. Оно помогает обнаружить гинекологические заболевания и дифференцировать злокачественные и доброкачественные опухоли.

Используются ультразвуковые волны и при исследовании других внутренних органов.

Применение ультразвука в стоматологии

В стоматологии с помощью ультразвука удаляют зубной налет и камень. Благодаря ему наслоения снимаются быстро и безболезненно, без травмирования слизистой оболочки. В то же время происходит обеззараживание ротовой полости.

Как сделать магнитострикционный излучатель своими руками: описание, схема и рекомендации

Магнитострикционный излучатель своими руками

Для генерации ультразвука применяются специальные излучатели магнитострикционного типа. К основным параметрам устройств относится сопротивление и проводимость. Также учитывается допустимая величина частоты. По конструкции устройства могут отличаться. Также надо отметить, что модели активно применяются в эхолотах. Чтобы разобраться в излучателях, важно рассмотреть их схему.

Кольцевая модификация

Кольцевые устройства работают при проводимости от 4 мк. Многие модели производятся с короткими подставками. Также надо отметить, что существуют модификации на полевых конденсаторах.

Чтобы собрать магнитострикционный излучатель своими руками, применяется обмотка соленоида. При этом клеммы важно устанавливать низкого порогового напряжения. Ферритовый стрежень целесообразнее подбирать небольшого диаметра.

Зажимное кольцо ставится в последнюю очередь.

Устройство с яром

Сделать магнитострикционный излучатель своими руками довольно просто. В первую очередь заготавливается стойка под стержень. Далее важно вырезать подставку. Для этого можно использовать металлический диск. Специалисты говорят о том, что подставка в диаметре должна быть не более 3.5 см.

Клеммы для устройства подбираются на 20 В. В верхней части модели фиксируется кольцо. При необходимости можно намотать изоленту. Показатель сопротивления у излучателей данного типа находится в районе 30 Ом. Работают они при проводимости не менее 5 мк. Обмотка в данном случае не потребуется.

Модель с двойной обмоткой

Устройства с двойной обмоткой производятся разного диаметра. Проводимость у моделей находится на отметке 4 мк. Большинство устройств обладает высоким волновым сопротивлением. Чтобы сделать магнитострикционный излучатель своими руками, используется только стальная подставка. Изолятор в данном случае не потребуется.

Ферритовый стержень разрешается устанавливать на подкладку. Специалисты рекомендуют заранее заготовить уплотнительное кольцо. Также надо отметить, что для сборки излучателя потребуется конденсатор полевого типа. Сопротивление на входе у модели должно составлять не более 20 Ом. Обмотки устанавливаются рядом со стержнем.

Излучатели данного типа выделяются высокой проводимостью. Работают модели при напряжении 35 В. Многие устройства оснащаются полевыми конденсаторами. Сделать магнитострикционный излучатель своими руками довольно проблематично. В первую очередь надо подобрать стержень небольшого диаметра. При этом клеммы заготавливаются с проводимостью от 4 мк.

Волновое сопротивление в устройстве должно составлять от 45 Ом. Пластина устанавливается на подставке. Обмотка в данном случае не должна соприкасаться с клеммами. В нижней части устройства обязана находиться круглая подставка. Для фиксации кольца часто применяется обычная изолента. Конденсатор напаивается над манганитом. Также надо отметить, что кольца иногда применяются с накладками.

Устройства для эхолотов

Для эхолотов часто используется магнитострикционный излучатель УЗ. Как приготовить модель своими руками? Самодельные модификации производятся с проводимостью от 5 мк. Волновое сопротивление у них в среднем равняется 55 Ом. Чтобы изготовить мощный ультразвуковой генератор своими руками, стержень применяется на 1.5 см. Обмотка соленоида накручивается с малым шагом.

Специалисты говорят о том, что стойки под излучатели целесообразнее подбирать из нержавейки. При этом клеммы применяются с малой проводимостью. Конденсаторы подходят разного типа.

Предельное напряжение у излучателей находится на отметке 14 Вт. Для фиксации стержня используются резиновые кольца. У основания устройства накручивается изолента.

Также стоит отметить, что магнит надо устанавливать в последнюю очередь.

Модификации для рыболокаторов

Устройства для рыболокаторов собираются только с проводными конденсаторами. Для начала требуется установить стойку. Целесообразнее применять кольца диаметром от 4.5 см.

Обмотка соленоида обязана плотно прилегать к стержню. Довольно часто конденсаторы припаиваются у основания излучателей. Некоторые модификации производятся на две клеммы. Ферритовый стрежень обязан фиксироваться на изоляторе.

Для укрепления кольца используется изолента.

Модели низкого волнового сопротивления

Устройства низкого волнового сопротивления работают при напряжении 12 В. У многих моделей имеются два конденсатора. Чтобы собрать прибор, генерирующий ультразвук, своими руками, потребуется стержень на 10 см.

При этом конденсаторы на излучатель устанавливаются проводного типа. Обмотка накручивается в последнюю очередь. Также надо отметить, что для сборки модификации потребуется клемма. В некоторых случаях используются полевые конденсаторы на 4 мк.

Параметр частоты будет довольно высокий. Магнит целесообразнее устанавливаться над клеммой.

Устройства высокого волнового сопротивления

Излучатели ультразвука высокого сопротивления хорошо подходят для приемников короткой волны. Собрать самостоятельно устройство можно только на базе переходных конденсаторов. При этом клеммы побираются высокой проводимости. Довольно часто магнит устанавливается на стойке.

Подставка для излучателя применяется малой высоты. Также надо отметить, что для сборки устройства используются один стрежень. Для изоляции его основания подойдет обычная изолента. В верней части излучателя обязано находиться кольцо.

Стержневые устройства

Схема ультразвукового излучателя стержневого типа включает в себя проводник с обмоткой. Конденсаторы разрешается применять разной емкости. При этом они могут отличаться по проводимости.

Если рассматривать простую модель, то подставка заготавливается круглой формы, а клеммы устанавливаются на 10 В. Обмотка соленоида накручивается в последнюю очередь.

Также надо отметить, что магнит подбирается неодимового типа.

Непосредственно стержень применяется на 2.2 см. Клеммы можно устанавливать на подкладке. Также надо упомянуть о том, что существуют модификации на 12 В.

Если рассматривать устройства с полевыми конденсаторами высокой емкости, то минимальный диаметр стержня допускается 2.5 см. При этом обмотка должна накручиваться до изоляции.

В верхней части излучателя устанавливается защитное кольцо. Подставки разрешается делать без накладки.

Модели с однопереходными конденсаторами

Излучатели данного типа выдают проводимость на уровне 5 мк. При этом показатель волнового сопротивления у них максимум доходит до 45 Ом. Для того чтобы самостоятельно изготовить излучатель, заготавливается небольшая стойка. В верхней части подставки обязана находиться накладка из резины. Также надо отметить, что магнит заготавливается неодимового типа.

Специалисты советуют устанавливать его на клей. Клеммы для устройства подбираются на 20 Вт. Непосредственно конденсатор устанавливается над накладкой. Стержень используется диаметром в 3.3 см. В нижней части обмотки должно находиться кольцо.

Если рассматривать модели на два конденсатора, то стержень разрешается использовать с диаметром 3.5 см. Обмотка должна накручиваться до самого основания излучателя. В нижней части стоки клеится изолента. Магнит устанавливается в середине стойки.

Клеммы при этом должны находиться по сторонам.

Электромагнитный импульс высокой мощности своими руками. Как сделать магнитострикционный излучатель своими руками: описание, схема и рекомендации. Что нужно для сборки

Магнитострикционный излучатель своими руками

Вас достала слишком громкая музыка соседей или просто хотите сделать какой-нибудь интересный электротехнический прибор самостоятельно? Тогда можете попробовать собрать простой и компактный генератор электромагнитных импульсов, который способен выводить из строя электронные устройства поблизости.

Генератор ЭМИ, представляет собой устройство, способное генерировать кратковременное электромагнитное возмущение, которое излучается наружу от своего эпицентра, нарушая при этом работу электронных приборов. Некоторые всплески ЭМИ встречаются в природе, например, в виде электростатического разряда. Также существуют искусственные всплески ЭМИ, к таким можно отнести ядерный электромагнитный импульс.

В данном материале будет показано, как собрать элементарный генератор ЭМИ, используя обычно доступные элементы: паяльник, припой, одноразовый фотоаппарат, кнопка-переключатель, изолированный толстый медный кабель, проволока с эмалированным покрытием, и сильноточный фиксируемый переключатель. Представленный генератор будет не слишком сильным по мощности, поэтому у него может не получиться вывести из строя серьезную технику, но на простые электроприборы он повлиять в состоянии, поэтому данный проект следует рассматривать как учебный для новичков в электротехнике.

Итак, во-первых, нужно взять одноразовый фотоаппарат, например, Kodak. Далее нужно вскрыть его. Откройте корпус и найдите большой электролитический конденсатор. Делайте это в резиновых диэлектрических перчатках, чтобы не получить удар током при разряде конденсатора. При полной зарядке на нем может быть до 330 В.

Проверьте вольтметром напряжение на нем. Если заряд еще имеется, то снимите его, замкнув выводы конденсатора отверткой. Будьте осторожны, при замыкании появится вспышка с характерным хлопком. Разрядив конденсатор, вытащите печатную плату, на которой он установлен, и найдите маленькую кнопку включения/выключения.

Отпаяйте ее, а на ее место запаяйте свою кнопку-переключатель.

Припаяйте два изолированных медных кабеля к двум контактам конденсатора. Один конец этого кабеля подключите к сильноточному переключателю. Другой конец оставьте пока свободным.

Теперь нужно намотать нагрузочную катушку. Оберните проволоку с эмаль-покрытием от 7 до 15 раз вокруг круглого объекта диаметром 5 сантиметров.

Сформировав катушку, оберните ее клейкой лентой для большей безопасности при ее эксплуатации, но оставьте два выступающих провода для подключения к клеммам.

Используйте наждачную бумагу или острое лезвие, чтобы удалить эмалевое покрытие с концов проволоки. Один конец соедините с выводом конденсатора, а другой с сильноточным переключателем.

Теперь можно сказать, что простейший генератор электромагнитных импульсов готов. Чтобы зарядить его, просто подключите батарею к соответствующим контактам на печатной плате с конденсатором. Поднесите к катушке какое-нибудь портативное электронное устройство, которое не жалко, и нажмите переключатель.

Помните, что не стоит удерживать нажатой кнопку заряда при генерации ЭМИ, иначе вы можете повредить цепь.

С малых дистанций. Естественно я сразу же захотел сделать подобную самоделку, поскольку она довольно эффектная и на практике показывает работу электромагнитных импульсов.

В первых моделях ЭМИ излучателя стояли несколько высоко ёмкостных конденсаторов из одноразовых фотоаппаратов, но данная конструкция работает не очень хорошо, из-за долгой “перезарядки”.

Поэтому я решил взять китайский высоковольтный модуль (который обычно используется в электрошокерах) и добавить к нему “пробойник”. Данная конструкция меня устраивала.

Но к сожалению у меня сгорел высоковольтный модуль и поэтому я не смог отснять статью по данной самоделке, но у меня было отснято подробное видео по сборке, поэтому я решил взять некоторые моменты из видео, надеюсь Админ будет не против, поскольку самоделка реально очень интересная.

Хотелось бы сказать что всё это было сделано в качестве эксперимента!

И так для ЭМИ излучателя нам понадобится:

-высоковольтный модуль-две батарейки на 1,5 вольта-бокс для батареек-корпус, я использую пластиковую бутылку на 0,5-медная проволока диаметром 0,5-1,5 мм-кнопка без фиксатора

-провода

Из инструментов нам понадобится:-паяльник

-термо клей

И так первым делом нужно намотать на верхнюю часть бутылки толстую проволоку примерно 10-15 витков, виток к витку (катушка очень сильно влияет на дальность электромагнитного импульса, лучше всего показала себя спиральная катушка диаметром 4,5 см) затем отрезаем дно бутылки

Берём наш высоковольтный модуль и припаиваем обязательно к входным проводам питание через кнопку, предварительно вынув батарейки из бокса

Берём трубочку от ручки и отрезаем от неё кусочек длиной 2 см:

Один из выходных проводов высоковольтника вставляем в отрезок трубочки и приклеиваем так как показано на фото:С помощью паяльника проделываем отверстие с боку бутылки, чуть больше диаметра толстой проволоки:Самый длинный провод вставляем через отверстие внутрь бутылки:Припаиваем к нему оставшийся провод высоковольтника:Располагаем высоковольтный модуль внутри бутылки:Проделываем ещё одно отверстие с боку бутылки, диаметром чуть больше диаметра трубочки от ручки:Вытаскиваем отрезок трубочки с проводом через отверстие и крепко приклеиваем и изолируем термо клеем:

Затем берём второй провод от катушки и вставляем его внутрь куска трубочки, между ними должен остаться воздушный зазор, 1,5-2 см, подбирать нужно экспериментальным путём

укладываем всю электронику внутрь бутылки, так чтобы ни чего не замыкало, не болталось и было хорошо заизолировано, затем приклеиваем:

Делаем ещё одно отверстие по диаметру кнопки и вытаскиваем её изнутри, затем приклеиваем:

Берём отрезанное дно, и обрезаем его по краю, так чтобы оно смогло налезть на бутылку, надеваем и приклеиваем:
Ну вот и всё! Наш ЭМИ излучатель готов, осталось только его протестировать! Для этого берём старый калькулятор, убираем ценную электронику и желательно одеваем резиновые перчатки, затем нажимаем на кнопку и подносим калькулятор, в трубочке начнёт происходить пробои электрического тока, катушка начнёт испускать электромагнитный импульс и наш калькулятор сначала сам включится, а потом начнёт рандомно сам писать числа!

До этой самоделки я делал ЭМИ на базе перчатки, но к сожалению отснял только видео испытаний, кстати с этой перчаткой я ездил на выставку и занял второе место из-за того что плохо показал презентацию. Максимальная дальность ЭМИ перчатки составляла 20 см. Надеюсь эта статья была вам интересна, и будьте осторожны с высоким напряжением!

Научно-технический прогресс стремительно развивается. К сожалению, его результаты проводят не только к улучшению нашей жизни, к новым удивительным открытиям или победам над опасными недугами, но и к появлению нового, более совершенного оружия.

На протяжении всего прошлого столетия человечество «ломало голову» над созданием новых, еще более эффективных средств уничтожения. Отравляющие газы, смертоносные бактерии и вирусы, межконтинентальные ракеты, термоядерное оружие . Не бывало еще такого периода в человеческой истории, чтобы ученые и военные сотрудничали так тесно и, к сожалению, эффективно.

Во многих странах мира активно проводятся разработки оружия на основе новых физических принципов. Генералы весьма внимательно наблюдают за последними достижениями науки и стараются поставить их себе на службу.

Одним из наиболее перспективных направлений оборонных исследований являются работы в области создания электромагнитного оружия. В желтой прессе оно обычно называется «электромагнитная бомба». Подобные исследования стоят весьма недешево, поэтому позволить их себе могут только богатые страны: США, Китай, Россия, Израиль.

Принцип действия электромагнитной бомбы заключается в создании мощного электромагнитного поля, что выводит из строя все устройства, работа которых связана с электричеством.

Это не единственный способ использования электромагнитных волн в современном военном деле: созданы передвижные генераторы электромагнитного излучения (ЭМИ), которые могут вывести из строя электронику противника на расстоянии до нескольких десятков километров. Работы в этой области активно проводятся в США, России, Израиле.

Существуют и еще более экзотические способы военного применения электромагнитного излучения, чем электромагнитная бомба. Большая часть современного оружия использует энергию пороховых газов для поражения противника. Однако все может измениться уже в ближайшие десятилетия. Для запуска снаряда также будут использованы электромагнитные токи.

Принцип действия такой «электрической пушки» довольно прост: снаряд, сделанный из проводящего материала, под воздействием поля выталкивается с большой скоростью на довольно большое расстояние. Эту схему планируют применять на практике уже в ближайшее время. Наиболее активно в этом направлении работают американцы, об успешных разработках оружия с таким принципом действия в России неизвестно.

Как вы представляете себе начало Третьей мировой войны? Ослепительные вспышки термоядерных зарядов? Стоны людей, умирающих от сибирской язвы? Удары гиперзвуковых летательных аппаратов из космоса?

Все может быть совсем по-другому.

Вспышка действительно будет, но не очень сильная и не испепеляющая, а похожая, скорее, на раскат грома. Самое «интересное» начнется потом.

Загорятся даже выключенные люминесцентные лампы и экраны телевизоров, в воздухе повиснет запах озона , а проводка и электрические приборы начнут тлеть и искриться. Гаджеты и бытовые приборы, в которых есть аккумуляторы, нагреются и выйдут из строя.

Перестанут работать практически все двигатели внутреннего сгорания. Отключится связь, не будут работать средства массовой информации, города погрузятся во тьму.

Люди не пострадают, в этом отношении электромагнитная бомба – очень гуманный вид оружия. Однако подумайте сами, во что превратится жизнь современного человека, если убрать из него устройства, принцип действия которых основан на электричестве.

Общество, против которого будет применено орудие подобного действия, окажется отброшенным на несколько веков назад.

Как это работает

Как можно создать столь мощное электромагнитное поле, которое способно оказывать подобное действие на электронику и электрические сети? Электронная бомба фантастическое оружие или подобный боеприпас можно создать на практике?

Электронная бомба уже была создана и уже два раза применялась. Речь идет о ядерном или термоядерном оружии. При подрыве подобного заряда одним из поражающих факторов является поток электромагнитного излучения.

В 1958 году американцы взорвали над Тихим океаном термоядерную бомбу, что привело к нарушению связи во всем регионе, ее не было даже в Австралии, а на Гавайских островах пропал свет.

Гамма-излучение, которое в избытке образуется при ядерном взрыве, вызывает сильнейший электронный импульс, что распространяется на сотни километров и выключает все электронные приборы. Сразу после изобретения ядерного оружия, военные занялись разработкой защиты собственной аппаратуры от подобного действия взрывов.

Работы, связанные с созданием сильного электромагнитного импульса, как и разработки средств защиты от него проводятся во многих странах (США, Россия, Израиль, Китай), но почти везде они засекречены.

Можно ли создать работающее устройство, на других менее разрушительных принципах действия, чем ядерный взрыв. Оказывается, что можно. Более того, подобными разработками активно занимались в СССР (продолжают и в России). Одним из первых, кто заинтересовался данным направлением, был знаменитый академик Сахаров.

Именно он первым предложил конструкцию конвенционного электромагнитного боеприпаса. По его задумке высокоэнергетическое магнитное поле можно получить путем сжатия магнитного поля соленоида обычным взрывчатым веществом . Подобное устройство можно было поместить в ракету, снаряд или бомбу и отправить на объект неприятеля.

Однако у подобных боеприпасов есть один недостаток: их малая мощность. Преимуществом подобных снарядов и бомб является их простота и низкая стоимость.

Можно ли защититься?

После первых испытаний ядерного оружия и определения электромагнитного излучения, как одного из его основных поражающих факторов, в СССР и США начали работать над защитой от ЭМИ.

К этому вопросу в СССР подходили очень серьезно. Советская армия готовилась воевать в условиях ядерной войны, поэтому вся боевая техника изготавливалась с учетом возможного воздействия на нее электромагнитных импульсов. Сказать, что защиты от него нет совсем – это явное преувеличение.

Вся военная электроника оборудовалась специальными экранами и надежно заземлялась. В ее состав включались специальные предохранительные устройства, разрабатывалась архитектура электроники максимально устойчивая к ЭМИ.

Конечно, если попасть в эпицентр применения электромагнитной бомбы большой мощности, то защита будет пробита, но на определенном расстоянии от эпицентра, вероятность поражения будет существенно ниже. Электромагнитные волны распространяются во все стороны (как волны на воде) поэтому их сила убывает пропорционально квадрату расстояния.

Кроме защиты, разрабатывались и средства радиоэлектронного поражения. С помощью ЭМИ планировали сбивать крылатые ракеты, есть информация об успешном применении этого метода.

В настоящее время разрабатывают передвижные комплексы, что могут испускать ЭМИ высокой плотности, нарушая работу вражеской электроники на земле и сбивая летательные аппараты.

об электромагнитной бомбе

Сделай своими руками
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: