Плавный пуск коллекторного электродвигателя своими руками

Содержание
  1. 2 способа плавного пуска электроинструмента с обычной розетки – ошибки и правила подключения для болгарки, торцовочной пилы через krrqd12a
  2. Зачем нужен облегченный пуск электроинструменту
  3. Безопасный запуск своими руками
  4. Практический результат
  5. Как сделать плавный пуск электроинструмента с обычной розетки
  6. Как сделать плавный пуск для электроинструмента своими руками
  7. Общие сведения
  8. Принцип действия
  9. Плавный пуск электроинструмента в переноске
  10. Для чего он нужен
  11. Выбираем схему
  12. На дискретных элементах
  13. На микросхеме и симисторе
  14. Интегральный регулятор
  15. Доработка удлинителя
  16. Удлинитель с регулировкой напряжения
  17. Плавный запуск электродвигателя – советы электрика – Electro Genius
  18. Типовые конфигурации и принципы действия электродвигателей
  19. Подключение электромотора на самодельных устройствах
  20. Запуск двигателя коллекторного типа
  21. Способы подключения асинхронных двигателей
  22. Способы запуска трехфазных асинхронных двигателей
  23. Как сделать плавный пуск электроинструмента с обычной розетки
  24. Плавный пуск для электроинструмента своими руками: схема, устройство, электродвигателя, на симисторе
  25. Особенности и срок службы
  26. Плавный пуск – для чего это нужно

2 способа плавного пуска электроинструмента с обычной розетки – ошибки и правила подключения для болгарки, торцовочной пилы через krrqd12a

Плавный пуск коллекторного электродвигателя своими руками

Дорогостоящие инструменты не всегда актуальны для бытового использования.

Но более дешевые варианты не оснащаются специальными электронными платами контроля тока, поэтому плавный пуск не предусмотрен, что часто вызывает преждевременный выход прибора из строя.

Небольшая модернизация своими руками позволяет уберечь электрические пилы (циркулярки и торцовки), а также дрели, шлифовальные машинки от перегрузок, причем такая схема не столь сложна для самостоятельного повторения.

Зачем нужен облегченный пуск электроинструменту

Схема плавного пуска представляет собой малогабаритную сборку из всего 5-6 электронных компонентов на базе мощного полупроводника с управлением от микросхемы.

Размеры такой платы позволяют поместить ее непосредственно в ручке электроинструмента, но модернизация не всегда перспективна из-за необходимости сохранения гарантии от производителя, а также возможности применения такого прибора для различных инструментов.

Схему запуска можно сделать самому по нескольким вариантам чертежей из интернета, но проще всего для торцовки или дрели использовать уже готовые блоки, предлагаемые в продаже. Они имеют много модификаций, что требует понимания принципа мягкого запуска и получаемых преимуществ.

Замедленный пуск необходим в первую очередь торцовочным пилам, которые не снабжены блоком регулировки оборотов двигателя. Сделать плавный пуск инструмента своими руками целесообразно по ряду причин:

  • Запуск мощного электродвигателя приводит к значительным скачкам в электросети (пиковым броскам), что негативно воздействует как инструмент, та и на проводку. Альтернативные источники электроэнергии, как генераторы и инверторы, в такой ситуации испытывают перегрузку и либо отключаются в автоматическом режиме, либо могут выйти из строя. Запуск через специальный модуль значительно уменьшает пик броска напряжения, что исключает вероятность перегрузки во всей цепи.
  • Торцовка без плавного пуска довольно быстро выходит из строя из-за ускоренного стачивания щеток, а также возникновения электрической дуги между контактами, что создает выгорание ламелей якоря и вызывает короткое замыкание обмоток ротора и статора. Двигатель резко набирает обороты, что при существенных диаметрах пилы приводит к большим инерционным силам, которые воздействуют на смещение инструмента не только в руках, а даже на стационарных крепежах. Такой резкий запуск может привести как минимум к резке материала в незапланированном месте, как максимум – вырыванию торцовки из рук или крепления с вероятностью возникновения несчастного случая. Установка маленького блока избавляет от таких проблем.
  • Замедленный разгон ротора на торцовочной пиле обеспечивает не только безопасную ее эксплуатацию, а значительно продлевает срок службы, так как в момент запуска исчезают ударные нагрузки в механической части инструмента. Шестерни в передачи не бьются между собой, а крутящий момент правильно распределяется без разрушительных последствий, что существенно снижает механическую выработку узла.

Безопасный запуск своими руками

Чтобы сделать самому плавный пуск торцовки можно воспользоваться одним из популярных способов:

  • Собрать электронную схему самостоятельно по предлагаемым на интернет просторах чертежам. Этот способ больше подходит любителям электромонтажных работ, так как необходимы знания и умения по подбору компонентов и отлаживанию электронных сборок. Детали приобретаются строго по требуемым параметрам (номиналам), причем их габариты важны для минимизации смонтированной платы. Не стоит забывать, что блок будет работать под высоким напряжением, поэтому качество пайки и общий монтаж должны отвечать правилам электрической безопасности. По этой причине метод не подходит для среднестатистического домашнего мастера.
  • Приобрести специализированный блок плавного пуска (БПП) и подключить его к электроинструменту. Чтобы обеспечить мягкий запуск для различных бытовых устройств с электродвигателями рекомендуется приобретенный блок разместить в удлинителе или переноске. Но, стоит учесть, что существует несколько вариантов заводских модулей для замедленного разгона, причем они не взаимозаменяемы.

Описанный способ подходит только для коллекторных двигателей, с асинхронными он не срабатывает, у них другой принцип возбуждения обмотки и для регулировки пуска требуется совершенно другой прибор. БПП рассчитан на подключение только одного потребителя, одновременное подключение нескольких приборов недопустимо.

Модификации блоков ПП

Электронные сборки для замедленного запуска выпускаются в нескольких модификациях и с различными техническими параметрами. Токопроводящая мощность может быть от 10 до 50 А и подбирается на основании данных потребителя, при этом размеры сборок несущественно отличаются.

Для модернизации торцовки своими руками рекомендуется использовать блоки мощностью с запасом, это облегчает рабочий режим общей схемы и дает возможность подключения потребителей большей мощности.

Самыми распространенными БПП считаются на 16 А, подходят для электродвигателей до 3 кВт – это максимальная мощность для бытовых электроинструментов.

БПП отличаются по структуре и способу подключения:

  • Модификация с тремя контактами (проводами).

Не может быть подключена по указанному выше принципу, так как имеет управляющий токопроводник, подача напряжения на который приводит к протеканию силового тока между другими двумя контактами, что должно приводить к запуску двигателя.

Такие модули монтируются внутрь ручного электроинструмента (торцовки) с подключением управляющего провода к пусковой кнопке.

Попытка подключения вне бытового прибора требует установки отдельной кнопки, причем пусковая клавиша на инструменте должна быть заблокирована во включенном положении, что крайне неудобно для эксплуатации в торцовки руках.

Другие варианты подключения не дают эффекта плавного пуска, а БПП остается под постоянным напряжением, небезопасно и неэффективно. Такая модель блоков может быть использована для регулировки частоты вращения ротора, причем управляющий провод подключается через переменное сопротивление (резистор), которое и выполняет функцию регулятора.

  • Модификация с двумя проводами (контактами).

Подключается в разрыв цепи, то есть в один из проводов, питающих любой коллекторный двигатель.

Эффект медленного набора оборотов возникает за счет краткосрочного снижения пускового напряжения без уменьшения проходящего тока, что и обеспечивает мягкий, но уверенный запуск.

Именно такие блоки могут быть смонтированы как в стационарные, так и в переносные розетки, причем кнопка включения на торцовочной пиле сохраняет свою функциональность.

БПП с тремя контактами подходят только для стационарных электроинструментов, для ручных бытовых приборов применяются блоки только с двумя проводами для подключения.

Мобильный облегченный запуск инструмента

Самый простой вариант организации плавного пуска для различных ручных электроинструментов – это установка БПП в розетку удлинителя, ведь вполне объемный его корпус имеет достаточно пространства для размещения даже самого мощного блока. Модернизация не занимает много времени и усилий:

  • Аккуратно разобрать корпус удлинителя, организовав доступ к подходящим проводам.
  • Блок ПП подключается в разрыв одного из проводов, что можно выполнить одним из способов: непосредственно в разрыв провода с организацией надежной скрутки и изоляции или к проводу и контактной группе.
  • Размещение БПП в корпусе розетки рекомендуется на максимально возможном удалении от контактной группы с клеевой надежной фиксацией, так как всегда существует вероятность нагрева блока, что снижает изоляционную защиту и может привести при вибрации к короткому замыканию.
  • Сборка корпуса должна обеспечить надежную укладку и фиксацию проводов без перекрещивания.

Практический результат

Устройство работает уже в течение многих лет, при этом заметно увеличился срок службы ламп накаливания (в несколько раз). А ещё эта система может продлить срок службы популярных галогенных ламп с цоколем E27.

Схема снижения мощности простая на симисторе

Можно поставить настройку на ограничение мощности (например наполовину), в рамках экономии, что даст достаточное освещение подсобных помещений и обеспечит облегчённый режим работы. Схема упрощённого модуля выше. За 10 лет эксплуатации с 5-ю лампами накаливания в люстре (5x100W), только один раз был заменен симистор. Сами лампочки исправно светят до сих пор на 80% мощности.

Как сделать плавный пуск электроинструмента с обычной розетки

Обычная розетка, если ее немного доработать, может продлить жизнь любому вашему инструменту — болгарке, циркулярной пиле, триммеру и т.п.

Все что для этого нужно — маленькая коробочка плавного пуска стоимостью около 200 рублей. Например такой марки как KRRQD12A.

Общеизвестно, что далеко не всякий инструмент снабжен подобными схемами плавного пуска. В основном они идут в дорогих моделях известных брендов Bosch, Hilti, DeWalt. Причем как в сетевой линейке, так и в аккумуляторной.

Как сделать плавный пуск для электроинструмента своими руками

Плавный пуск коллекторного электродвигателя своими руками

Плавный пуск получил широкое применение в безопасном запуске электродвигателей. Во время запуска двигателя происходит превышение номинального тока (Iн) в 7 раз.

В результате этого процесса происходит уменьшение эксплуатационного периода мотора, а именно обмоток статора и значительная нагрузка на подшипники.

Именно из-за этой причины и рекомендуется сделать плавный пуск для электроинструмента своими руками, где он не предусмотрен.

Общие сведения

Статор электродвигателя представляет собой катушку индуктивности, следовательно, существуют сопротивления с активной и реактивной составляющей.

При протекании электрического тока через радиоэлементы, имеющие сопротивление с активной составляющей, происходят потери, связанные с преобразованием части мощности в тепловой вид энергии.

Например, резистор и обмотки статора электродвигателя обладают сопротивлением с активной составляющей. Вычислить активное сопротивление не составляет труда, так как происходит совпадение фаз тока (I) и напряжения (U).

Используя закон Ома для участка цепи, можно рассчитать активное сопротивление: R = U/I. Оно зависит от материала, площади поперечного сечения, длины и его температуры.

Если ток проходит через реактивный тип элементов (с емкостными и индуктивными характеристиками), то, в этом случае, появляется реактивное R. Катушка индуктивности, не имеющая практически активного сопротивления (при расчетах не учитывается R ее обмоток).

Этот вид R создается благодаря Электродвижущей силе (ЭДС) самоиндукции, которая прямо пропорционально зависит от индуктивности и частоты I, проходящего через ее витки: Xl = wL, где w — угловая частота переменного тока (w = 2*Пи*f, причем f — частота тока сети) и L — индуктивность (L = n * n / Rm, n — число витков и Rm — магнитное сопротивление).

При включении электродвигателя пусковой ток в 7 раз больше номинального (ток, потребляемый при работе инструмента) и происходит нагрев обмоток статора. Если статорная катушка является старой, то может произойти межвитковое КЗ, которое повлечет выход электроинструмента из строя. Для этого нужно применить устройство плавного пуска электроинструмента.

Одним из методов снижения пускового тока (Iп) является переключение обмоток. Для его осуществления необходимы 2 типа реле (времени и нагрузки) и наличие трех контакторов.

Пуск электромотора с обмотками, соединенными по типу «звезда» возможен только при 2-х не одновременно замкнутых контакторах. Через определенный интервал времени, который задает реле времени, один из контакторов отключается и включается еще один, не задействованный ранее.

Благодаря такому чередованию включения обмоток и происходит снижение пускового тока. Этот способ обладает существенным недостатком, так как при одновременно замыкании двух контакторов возникает ток КЗ. Однако при использовании этого способа обмотки продолжают нагреваться.

Еще одним способом снижения пускового тока является частотное регулирование запуска электродвигателя. Принципом такого подхода является частотное изменение питающего U. Основной элемент этого вида устройств плавного пуска является частотный преобразователь, состоящий из следующих элементов:

  1. Выпрямитель.
  2. Промежуточная цепь.
  3. Инвертор.
  4. Электронная схема управления.

Выпрямитель изготавливается из мощных диодов или тиристоров, выполняющий роль преобразователя U питания сети в постоянный пульсирующий ток.

Промежуточная цепь сглаживает пульсирующий постоянный ток на выходе выпрямителя, которая собирается на конденсаторах большой емкости.

Инвертор необходим для непосредственного преобразования сигнала на выходе промежуточной цепи в сигнал амплитуды и частоты переменной составляющей. Электронная схема управления нужна для генерации сигналов, необходимых для управления выпрямителем, инвертором.

Принцип действия

Во время пуска электродвигателя коллекторного типа происходит значительное кратковременное увеличение тока потребления, которое и служит причиной преждевременного выхода из строя электроинструмента и сдачей его в ремонт.

Происходит износ электрических частей (превышение тока в 7 раз) и механических (резкий запуск). Для организации «мягкого» пуска следует применять устройства плавного пуска (далее УПП).

Эти устройства должны соответствовать основным требованиям:

  1. Плавное увеличение нагрузки.
  2. Возможность запуска двигателя через определенные интервалы времени.
  3. Обеспечение защиты от линейных скачков U, пропадания фазы (для 3-фазного электродвигателя) и различных помех электрической составляющей.
  4. Значительно повышение срока эксплуатации.

Наиболее широкое распространение получили симисторные УПП, принципом действия которых является плавное регулирование U при помощи регулировки угла открытия перехода симистора.

Симистор нужно подключить напрямую к обмоткам двигателя и это позволяет уменьшить пусковой ток от 2 до 5 раз (зависит от симистора и схемы управления).

К основным недостаткам симисторных УПП являются следующие:

  1. Сложные схемы.
  2. Перегрев обмоток при длительном запуске.
  3. Проблемы с запуском двигателя (приводит к значительному нагреву статорных обмоток).

Схемы усложняются при использовании мощных двигателей, однако, при небольших нагрузках и холостом ходе возможно использование простых схем.

УПП с регуляторами без обратной связи (по 1 или 3 фазам) получили широкое распространение. В моделях этого типа появляется возможность предварительного выставления времени пуска и величины U перед пуском двигателя.

Однако, в этом случае невозможно регулировать величину вращающего момента при нагрузке. С этой моделью применяется специальное устройство для снижения пускового тока, защиты от пропадания и перекоса фаз, а также от перегрузок.

Заводские модели имеют функцию слежения за состоянием электромотора.

Простейшие схемы однофазного регулирования исполняются на одном симисторе и используются для инструмента с мощностью до 12 кВт.

Существуют более сложные схемы, позволяющие производить регулировку параметров питания двигателя мощностью до 260 кВт.

При выборе УПП заводского производства необходимо учесть такие параметры: мощность, возможные режимы работы, равенство допустимы токов и количество запусков в определенный промежуток времени.

Плавный пуск электроинструмента в переноске

Плавный пуск коллекторного электродвигателя своими руками

Некоторый электроинструмент в силу своих функциональных особенностей не имеет встроенного регулятора оборотов. В этой статье мы доработаем удлинитель таким образом, чтобы подключенный к ней электроинструмент запускался плавно.

Для чего он нужен

Если инструмент не оснащен регулятором оборотов, значит он ему не нужен. Угловая шлифмашина, к примеру, всегда используется при полных оборотах, иначе она становится опасной.  Для чего такому электроинструменту плавный пуск? Причин немало, ведь резкий старт двигателя той же шлифмашины или электрофуганка вызывает:

  • выгорание щеток и ламелей ротора;
  • токовый удар в электросети;
  • попытка инструмента вырваться из рук, что небезопасно;
  • сильный пусковой удар шестеренок редуктора друг о друга, вызывающий их быстрый износ.

При плавном же пуске ни токового, ни механического удара не произойдет. Двигатель электроинструмента плавно запустится и выйдет на максимальные обороты.

Выбираем схему

Существует множество схем плавного пуска, постараемся подобрать что-нибудь подходящее и наиболее доступное для нас.

На дискретных элементах

Регулятор, схема которого представлена ниже, собран на симметричном тиристоре (симисторе) КУ208Г и позволяет осуществлять плавный пуск электроинструмента мощностью до 2 кВт.

Схема плавного пуска на симисторе

Сразу после подачи напряжения на схему (тумблер SA1) Конденсатор С1 разряжен, симистор VS1 закрыт и двигатель М не вращается.

Далее конденсатор постепенно заряжается через диод VD1 и резистор R2, симистор начинает открываться, но с большой задержкой от начала полуволны сетевого напряжения.

На мотор поступает небольшое начальное напряжение, и он запускается на минимальных оборотах.

По мере зарядки конденсатора задержка открывания симистора уменьшается, напряжение на моторе увеличивается, а значит, увеличиваются и обороты. Как только конденсатор зарядится полностью, симметричный тиристор будет открываться в начале каждой полуволны, подавая на двигатель полное сетевое напряжение, и последний выйдет на полные обороты.

Время плавного включения можно регулировать, подбирая емкость конденсатора С1. При указанных номиналах (500 мкФ) инструмент выйдет на рабочий режим примерно через 2-3 сек после включения.

Важно! При мощности электроинструмента более 500 Вт симметричный тиристор необходимо установить на радиатор.

На микросхеме и симисторе

Эта схема собрана на отечественной универсальной микросхеме КР1182ПМ1. С ее помощью можно построить как устройство плавного пуска, так и регулятор напряжения. На схеме, приведенной ниже, микросхема включена в режиме плавного пуска.

Схема плавного пуска на ИМС КР1182ПМ1

Поскольку микросхема имеет относительно малую выходную мощность – до 150 Вт, – то оснащена мощным выходным ключом, в роли которого выступает симметричный тиристор ТС122-20-10, выдерживающий ток до 20 А. Время выхода двигателя на рабочий режим зависит от емкости конденсатора С1. Такая схема сможет работать без радиатора при мощности нагрузки до 1 кВт.

Полезно! При необходимости симистор ТС122-20-10 можно заменить на КУ208Г, но мощность устройства при такой замене упадет вдвое.

Интегральный регулятор

Схема на дискретных элементах достаточно проста и не содержит дефицитных элементов, но она слишком громоздка и ее придется поместить в отдельный корпус, особенно если электроинструмент мощный и потребуется радиатор. В этом плане намного удобнее использовать готовые интегральные блоки плавного пуска. Самый удобный для нас вариант – KRRQD20A.

Блок плавного пуска KRRQD20A

Компактный интегральный блок плавного пуска (БПП) рассчитан на ток до 20 А и способен коммутировать мощность до 4 кВт.

Модуль имеет 2 вывода и включается в разрыв одного из питающих проводов двигателя инструмента.

Если оснастить им удлинитель (многие почему то называют его переноской), то электроинструмент, подключенный через него, будет плавно запускаться при нажатии на кнопку включения.

Схема подключения модуля KRRQD20A к удлинителю

На фото хорошо видно, что модуль предназначен для установки на радиатор, но если мощность электроинструмента не превышает 1 кВт, то радиатор не потребуется.

Важно! Существуют похожие модули с теми же функциями, но имеющие три вывода. Для наших целей они не подходят, поскольку включаются не просто в разрыв питающего провода, а подают напряжение на мотор по отдельной линии.

Блок плавного пуска XS-12/D3

Схема подключения нанесена прямо на корпусе прибора и очевидно, что его можно использовать, только установив после выключателя в сам электроинструмент.

Тоже неплохой вариант, но, во-первых, удлинитель более универсальное решение (можно подключать любой инструмент или даже лампу), а, во-вторых, разбирая инструмент, мы лишаемся гарантийного обслуживания.

Доработка удлинителя

Существует множество вариантов доработки удлинителя. Если нам нужна максимальная нагрузка, то БПП можно выполнить в отдельном корпусе, в качестве которого можно взять ту же розетку, вытряхнув из нее начинку. Если инструмент бытовой и радиатор не нужен, то вполне реально разместить такой модуль прямо в розетке удлинителя.

Без радиатора модуль отлично помещается в розеткеПолезно! Эту доработанную розетку удобно  разместить на одной площадке вместе с розетками, включенными напрямую в сеть. Это делает удлинитель универсальным. Одна розетка с плавным пуском, остальные обычные на 220 В. Ту, которая с плавным, просто запитываем от обычных.Универсальный удлинитель

Удлинитель с регулировкой напряжения

Если для работы с угловой шлифмашиной оптимальны максимальные обороты, то некоторые другие электроинструменты удобнее использовать в разных режимах. Если такие инструменты не оснащены собственным регулятором или последний вышел из строя, то можно воспользоваться удлинителем с регулировкой напряжения. Для этого достаточно собрать несложную схему:

Простая схема регулировки напряжения

Здесь в качестве управляющего элемента используется симистор BTA16, рассчитанный на ток 16 А. Если его установить на радиатор, то регулятор можно использовать с электроинструментом мощностью до 3 кВт. Если радиатора нет, то мощность нагрузки не должна превышать 600 Вт.

Вместо симметричного динистора DB3 можно использовать HT-32, STB120NF10T4, STB80NF10T4, BAT54. Регулировка оборотов производится при помощи переменного резистора сопротивлением 500 кОм желательно с линейной характеристикой.

Такой блок с радиатором и переменным резистором, конечно, в розетку не поместится, поэтому для него понадобится свой корпус. На фото ниже изображен один из вариантов – схема размещена в корпусе вышедшего из строя настенного накладного диммера.

Вариант размещения регулятора оборотов

Как мы убедились, оснастить удлинитель схемой плавного пуска совсем несложно – с этим справится каждый, кто знаком с основами электротехники. Да, придется с полчаса повозиться, но зато теперь и инструмент будет жив, и руки целы.

Плавный запуск электродвигателя – советы электрика – Electro Genius

Плавный пуск коллекторного электродвигателя своими руками

Работа внушительной части приборов, используемых в быту и на производстве, обеспечивается электродвигателями с различными спецификациями. Изучив технические характеристики, схемы соединения к электропитанию и подключения фаз двигателей, их можно использовать вторично в самодельных станках, насосных и вентиляционных системах.

Типовые конфигурации и принципы действия электродвигателей

Есть два наиболее распространенных вида моторов, подключение которых можно выполнить без дополнительных деталей. Это асинхронные двигатели с однофазным или трехфазным питанием и коллекторные устройства.

В асинхронных однофазных двигателях обмотка на роторе короткозамкнутая, по конструкции напоминающая колесо для белки.

Замкнутые на кругах стержни входят в пазы сердечника, где при индукции тока создается поле уравновешивающее электромагнитное поле катушки. Для того, чтобы после подключения к сети мотор заработал, нужен стартовый толчок.

В некоторых случаях, например на точильном станке двигатель можно запустить вручную, простым вращательным движением вала.

Можно также снабдить самодельный инструмент дополнительной стартовой обмоткой или частотным преобразователем, который обеспечит плавный запуск мотора. Начало вращения в асинхронных двигателях с трехфазной обмоткой статора происходит автоматически, благодаря чередованию фаз

Как видно на структурной схеме, в коллекторном электродвигателе имеются рабочая и пусковая обмотки. Переключение обмотки на роторе происходит при помощи графитовых щеток, единовременно под напряжением находится только одна из рамок, с магнитным полем, перпендикулярным полю статорной обмотки.

Подключение электромотора на самодельных устройствах

Перед использованием электродвигателя нужно навести справки о его типе и особенностях конструкции. Единственной доступной информацией при этом может быть лишь серийная маркировка на корпусе, остальное — мощность, тип, возможные системы управления двигателем — придется поискать в технических справочниках.

Проверка проводных выходов и корпуса на короткое замыкание — застрахует от аварий. Для этого, после визуального осмотра на предмет следов возгорания, при помощи мультиметра нужно сделать прозвон всех контактов и корпуса, затем проверить обмотки и выводы, и также конденсаторы при наличии.

Запуск двигателя коллекторного типа

Коллекторные двигатели компактны и работают на высоких оборотах. Ими оснащаются малогабаритные бытовые приборы, например, миксеры, мясорубки, кофемолки и стиральные машины, а также ручные инструменты — дрели, шуруповёрты, дисковые пилы и т. п.

На фото — схема подключения такого электродвигателя к питанию 220В через простой замыкающий выключатель. Кнопка в зажатом положении подает ток на обмотки статора и ротора. При двух разных обмотках на статоре можно сделать перемычку для переключения скоростей.

Способы подключения асинхронных двигателей

Различные модели асинхронных двигателей используются в бытовых кондиционерах, в насосных системах и аппаратуре промышленного назначения. Они, как правило, оснащаются преобразователями частоты, которые в зависимости от предназначения, выполняют постепенный набор оборотов при включении, или плавное, не ступенчатое, переключение скоростей.

Схема подключения обычно дается прямо на корпусе, где маркируются выводящие провода пусковой и рабочей обмотки. В других случаях их можно определить при помощи замеров сопротивления. Величина в Омах в двух вариантах последовательного соединения должна в сумме быть равной показателю сопротивления пары обмоток ротора и статора.

Конденсаторы могут быть установлены по схеме подключения к статорной обмотке, для обеспечения пуска электродвигателя, или в качестве рабочего устройства, подсоединенного к основной обмотке. Возможен и комбинированный вариант с двумя конденсаторами.

Емкость теплообменника зависит от мощности мотора в расчете 7мкФ на 100Вт. Чрезмерный нагрев корпуса после запуска свидетельствует о недостаточной емкости подключенных конденсаторов. Если наблюдается спад мощности и замедление оборотов, следует уменьшить емкость.

Трехфазными двигателями, отличающимися большой мощностью и возможностью автоматического старта оборудуют деревообрабатывающие и токарные станки. К трехфазной сети питания такие моторы подсоединяются в двух конфигурациях: треугольной или в виде звезды.

Частотные преобразователи — важный элемент системы управления двигателем, могут быть заменены симисторами для плавного пуска, которые подключаются по трехфазной схеме. Это позволяет снизить расход электроэнергии и износ мотора, предотвращает перегрев и дает ряд дополнительных возможностей для подключения автоматики.

Способы запуска трехфазных асинхронных двигателей

Доброго времени суток, уважаемые читатели блога nasos-pump.ru

В рубрике «Общее» рассмотрим способы запуска трехфазных асинхронных двигателей с коротко замкнутым ротором. В настоящее время используются различные способы запуска асинхронных двигателей. При запуске двигателя должны удовлетворяться основные требования. Запуск должен происходить без применения сложных пусковых устройств.

Пусковой момент должен быть достаточно большим, а пусковые токи как можно меньше. Современные электродвигатели являются энерго-эффективными двигателями и имеют более высокие пусковые токи, что заставляет уделять большее внимание их способам запуска.

При подаче на двигатель напряжения питания возникает скачок тока, который называют пусковым током.

Пусковой ток обычно превышает номинальный в 5 – 7 раз, но действие его кратковременное. После того как двигатель вышел на номинальные обороты, ток падает до минимального.

В соответствии с местными нормами и правилами, для снижения пусковых токов, и используются разные способы запуска асинхронных двигателей с коротко замкнутым ротором. Вместе с этим необходимо уделять внимание и стабилизации напряжения сетевого питания.

Говоря о способах запуска, которые уменьшают пусковой ток, следует отметить, что период запуска не должен быть слишком долгим. Слишком продолжительные периоды запуска могут вызвать перегрев обмоток.

 Прямой запуск

Самый простой и наиболее часто применяемый способ запуска асинхронных двигателей – это прямой пуск. Прямой пуск означает, что электродвигатель запускается прямым подключением к сетевому напряжению питания. Прямой пуск применяется при стабильном питании двигателя, жестко связанного с приводом, например насоса. На (Рис.1) приведена схема прямого пуска асинхронного двигателя. 

Двигатели малой и средней мощности обычно проектируют так, чтобы при прямом подключении обмоток статора к сетевому питанию пусковые токи, возникающие при запуске, не создавали чрезмерных электродинамических усилий и превышений температуры на двигатель, с точки зрения механической и термической прочности.

Переходной процесс в момент запуска характеризуется очень быстрым затуханием свободного тока, что позволяет пренебречь этим током и учитывать только установившееся значение тока переходного процесса. На графике (Рис.

1) приведена характеристика пускового тока при прямом запуске асинхронного двигателя с коротко замкнутым ротором.

Прямой запуск от сети питания является самым простым, дешёвым и наиболее часто применяемым способом запуска.

При таком запуске происходит наименьшее повышение температуры в обмотках электродвигателя во время включения по сравнению со всеми остальными способами запуска. Если нет жестких ограничений по току, то такой метод запуска является наиболее предпочтительным.

В разных странах действуют различные правила и нормы по ограничению максимального пускового тока. В таких случаях, необходимо использовать другие способы запуска.

Для небольших электродвигателей пусковой момент будет составлять от 150% до 300% от номинального момента, а пусковой ток будет составлять от 300% до 700% от номинального значения или даже выше.

Запуск «звезда – треугольник»

Запуск переключением «звезда – треугольник» используется для трёхфазных индукционных электродвигателей и применяется для снижения пускового тока. Следует отметить, что запуск переключением «звезда – треугольник» возможен только в тех двигателей, у которых  выведены начала и концы всех трех обмоток.

Пульт для запуска «звезда – треугольник» состоит и следующих комплектующих, трех контакторов (пускателей), реле перегрузки по току и реле времени, управляющего переключением пускателей.

Чтобы можно было использовать этот способ запуска, обмотки статора электродвигателя, соединенные по схеме «треугольник», должны быть рассчитаны на работу в номинальном режиме. Обычно электродвигатели рассчитаны на напряжение 400 В при соединении по схеме «треугольник» (∆) или на 690 В при соединении по схеме «звезда» (Y).

Такая унифицированная схема соединения может быть также использована для пуска электродвигателя при более низком напряжении. Схема запуска переключением «звезда – треугольник» показана на (Рис. 2)

В момент пуска электропитание к обмоткам статора подключено по схеме «звезда» (Y) Замкнуты контакторы К1 и К3. По истечении определённого периода времени, зависящего от мощности двигателя и времени разгона, происходит переключение на режим запуска «треугольник» (∆).

При этом контакты пускателя K3 размыкаются, а контакты пускателя K2 замыкаются. Управляет переключением контактов пускателей K3 и K2 реле времени. На реле выставляется время, в течение которого происходит разгон двигателя.

В режиме запуска «звезда – треугольник» напряжение, подаваемое на фазы обмотки статора, уменьшается в корень из трех раз, что приводит к уменьшению фазных токов тоже в корень из трех раз, а линейных токов в 3 раза.

Соединение по схеме «звезда – треугольник» дает более низкий пусковой ток, составляющий всего одну треть тока при прямом запуске. Запуск «звезда – треугольник» особенно хорошо подходят для инерционных систем, когда происходит «подхватывание» нагрузки после того, как произошел разгон двигателя.

Как сделать плавный пуск электроинструмента с обычной розетки

Плавный пуск коллекторного электродвигателя своими руками

Обычная розетка, если ее немного доработать, может продлить жизнь любому вашему инструменту — болгарке, циркулярной пиле, триммеру и т.п.

Все что для этого нужно — маленькая коробочка плавного пуска стоимостью около 200 рублей. Например такой марки как KRRQD12A.

Общеизвестно, что далеко не всякий инструмент снабжен подобными схемами плавного пуска. В основном они идут в дорогих моделях известных брендов Bosch, Hilti, DeWalt. Причем как в сетевой линейке, так и в аккумуляторной.

Электроинструмент без такого устройства имеет кучу недостатков:

  • искрение якоря на коллекторе с выгоранием ламелей якоря
  • выгорание щеток и более быстрое их стачивание
  • чаще выходят из строя обмотки ротора и статора
  • токовый бросок в общую электросеть

  • удары шестерней друг о друга и более быстрое их срабатывание
  • опасный рывок при запуске, вырывающий инструмент из рук и повышающий травмоопасность

При работе с торцевой пилой имеющей ПП, диск не будет сбиваться с подготовленной точки реза. Что немаловажно для непрофессиональных столяров.

Если у вас на даче или в доме на начальном этапе строительства еще нет электроэнергии и вы пользуетесь генератором, то рано или поздно поймете, что без БПП (блока плавного пуска) с резкими начальными токами, генератор долго не протянет. Поэтому такая штука способна сберечь не только инструмент, но и аварийные источники питания.

Можно конечно самостоятельно встроить БПП во внутрь той же болгарки или торцовки, однако разбирать технику и ковыряться во внутренностях охота далеко не каждому.

Плюс ко всему прочему, вскрытие нового корпуса влечет за собой потерю гарантии. Поэтому лучшее применение для блока KRRQD12A – это внешнее подключение.

Данная коробочка рассчитана на ток 12 Ампер.

Есть и более мощная модель на 20А.

Что характерно, габариты у них одинаковые, а разница в цене пару десятков рублей.

Казалось бы лучше взять ее, но для стандартной розетки в 16А более выгоден первый вариант. Не будет желания подключать более мощную нагрузку и тем самым подпалить все контакты.

Мастера самоделкины конечно собирают подобные схемки и своими руками, на основе тиристоров ВТА 12-600 или других, конденсаторов, динистора и парочки мелких резисторов. Примеров схем в интернете можно найти множество.

Но рядовому пользователю инструмента, гораздо проще все это купить в уже готовом компактном корпусе. Заказать подобный блок можно по ссылке отсюда.

Кстати будьте внимательны, есть похожие устройства, но с тремя проводками. Например XS-12/D3.

Или другие модели внешне похожие на KRRQD.

Но они собраны на несколько другом принципе и их нужно устанавливать после кнопки ПУСК, в самом инструменте. Напряжение на них должно подаваться только в момент замыкания пусковой кнопки болгарки и сразу исчезать после ее отпускания.

Схема подключения на них следующая:

Фаза подается на контакт “А”, ноль на “С”. Далее фаза выходным проводом управления идет на двигатель (это как раз третий проводок).

В двухпроводном блоке такого нет, так как подключается он в разрыв цепи, и напряжение (разность потенциалов) к нему прикладывается только в момент пуска и работы инструмента.

Еще один момент – так называемый электрический тормоз или тормозная обмотка на торцовках. С 3-х проводным внешним УПП он может не работать, а вот с 2-х проводной моделью будет.

Самое главное требование для такой розетки – это ее мобильность. Поэтому вам понадобится переноска.

С помощью нее можно будет плавно запускать инструмент в любом месте – в гараже, на даче, при строительстве своего дома на разных участках стройплощадки.

Первым делом переноску нужно разобрать.

Основные провода питания в ней могут быть либо припаяны, либо подсоединены на винтовых зажимах.

В зависимости от этого, также будет происходить и подключение вашей дополнительной розетки. Это должна быть именно дополнительная розетка возле переноски, чтобы иметь возможность одновременно подключать инструмент в разных режимах.

Кстати, если вы по ошибке включите болгарку или циркулярку, имеющие заводской встроенный плавный пуск в розетку, также снабженной таким УПП, то на удивление все будет работать. Единственный момент – получится задержка запуска пилы или оборотов диска на пару секунд, что не очень удобно в работе и без привычки может озадачить.

Плавный пуск для электроинструмента своими руками: схема, устройство, электродвигателя, на симисторе

Плавный пуск коллекторного электродвигателя своими руками

Владельцы ручного электроинструмента, как любители так и профессионалы, часто сталкиваются с его поломками. Не всегда это происходит по вине пользователя. Есть особенности, из-за которых это происходит вне зависимости от внешних факторов.

Это зависит от технического совершенства изделия, его цены и области применения.

Значительной части неисправностей можно избежать даже при использовании недорогих электроинструментов, если выполнить их несложную доработку, например, сделать плавный пуск.

Особенности и срок службы

В ручных электроинструментах, таких как: болгарка(ушм), циркулярная пила, шуруповерт, дрель – используют коллекторные двигатели с последовательным возбуждением.

Они могут работать на постоянном и на переменном токе.

Для их запитки в большинстве случаев используется обычная электросеть 230 В 50 Гц. Раньше для профессионального инструмента использовалась сеть 380 В. Теперь, с ростом мощности потребителей в однофазных сетях (офисы и жилой сектор), появились и профессиональные электроинструменты на 220 В.

Коллекторные двигатели имеют большой крутящий и пусковой моменты, компактны, легко изготавливаются на повышенное напряжение. Крутящий момент здесь является решающим. При невысокой массе машины он как раз подходит для ручного электроинструмента. Но у таких электромоторов имеются недостатки и слабые места. Одно из таких слабых мест – щеточный узел.

Щетки из прессованного графита с наполнителями трутся о медные пластины коллектора и подвергаются механическому износу и электроэрозии. Это приводит к увеличению искрения и повышает пожарную и взрывоопасность электроинструмента.

Попадание минеральной пыли внутрь ускоряет износ. Хотя вентиляторы, предусмотренные конструкцией, выдувают воздух наружу, пыль и цемент могут легко попадать внутрь. Во время простоя, если инструмент неудачно положили, пыль легко попадает внутрь.

На практике это постоянное явление.

Щетки электродвигателя из прессованного графита

Еще один недостаток электроинструмента – частые поломки редуктора. Это происходит как раз из-за большого пускового момента. Достоинство оборачивается недостатком.

С поломкой редуктора приходится менять инструмент, ремонту они, обычно, не подлежат. К сожалению, промышленность, в стремлении снизить себестоимость продукции делает это за счет качества.

Хочешь пользоваться хорошим электроинструментом – плати немалые деньги.

С последним недостатком как раз можно эффективно бороться плавным пуском. Многие производители делают это, но не всегда уделяют этому достаточно внимания. Хорошие регуляторы оборотов есть не у всех инструментов.

Плавный пуск – для чего это нужно

Для снижения непомерной нагрузки на механику электроинструмента при пуске, могут быть приняты меры со стороны электропитания.

Вместо подачи на электродвигатель полного напряжения от источника (электросети), можно подавать пониженное напряжение, с помощью плавного пуска. Но где его взять? Речь идет о массовом применении.

В отдельных случаях специалисты и умельцы могли решать эту задачу, но большинству рядовых потребителей это было недоступно.

Существует три способа ограничить пусковой момент электроинструмента и добиться плавного старта:

  1. Применение реостатов;
  2. Применение трансформаторов;
  3. Применение полупроводниковых ключей.

Первый способ применялся еще очень давно, но он не экономичен и неудобен.

Его можно применять и на постоянном, и на переменном токе.

Значительная часть мощности теряется на нагрев сопротивления реостата. Если задача ограничивается только плавным пуском, то это вполне терпимо. Если таким способом регулировать рабочую скорость электродвигателя, то это лишний нагрев окружающий среды и расход электроэнергии. В любом случае устройство оказывается громоздким.

Второй способ намного лучше и экономичнее. Подходит только для переменного тока. Он также может повысить электробезопасность при работе с электроинструментом. Недостаток в том, что классические трансформаторы теперь очень недешевы. Даже при самостоятельном изготовлении, так как в них уходит много дорогой меди. Устройство получается также достаточно большим и тяжелым.

Трансформатор

Третий способ плавного пуска самый современный и дешевый. Он опирается на массовое применение полупроводников.

В свое время, в исследования и наладку промышленного производства полупроводниковых приборов были вложены огромные средства.

Но дешевизна материалов, из которых их производят, и массовость выпуска уже успели все окупить. Благодаря невысокой себестоимости такие приборы доступны всем.

Сделай своими руками
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: