При какой температуре плавится титан

Содержание
  1. Титан
  2. СТРУКТУРА
  3. СВОЙСТВА
  4. Запасы и добыча
  5. ПРОИСХОЖДЕНИЕ
  6. ПРИМЕНЕНИЕ
  7. Кристаллографические свойства
  8. Свойства космического металла титана: низкая плотность, высокая температура плавления и коррозионная стойкость
  9. Теории происхождения названия
  10. Месторождения космического материала
  11. Химические свойства
  12. Способ получения из сырья
  13. Основные сферы применения
  14. Двоякость свойств металла титан
  15. Свойства титана
  16. Титан и конкуренция с другими металлами
  17. Какими способами получают титан?
  18. Области применения
  19. Физические и механические свойства
  20. Способы получения
  21. 1. Магниетермический процесс
  22. 2. Гидридно-кальциевый метод
  23. 3. Электролизный метод
  24. 4. Йодидный метод
  25. Применение титана
  26. Физические характеристики и свойства одного из самых твердых металлов — титана
  27. Плотность металла
  28. Температуры плавления и кипения
  29. Теплоемкость
  30. Электрические характеристики
  31. Коррозионная стойкость

Титан

При какой температуре плавится титан

Брусок кристаллического титана

Титан — лёгкий прочный металл серебристо-белого цвета.

Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой, β-Ti с кубической объёмно-центрированной упаковкой, температура полиморфного превращения α↔β 883 °C.

Титан и титановые сплавы сочетают легкость, прочность, высокую коррозийную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.

СТРУКТУРА

Кристаллическая структура кристалла

Титан имеет две аллотропические модификации. Низкотемпературная модификация, существующая до 882 °C, имеет гексагональную плотноупакованную решетку с периодами а = 0,296 нм и с = 0,472 нм.

Высокотемпературная модификация имеет решетку объемноцентрированного куба с периодом а = 0,332 нм.

Полиморфное превращение (882 °C) при медленном охлаждении происходит по нормальному механизму с образованием равноосных зерен, а при быстром охлаждении — по мартенситному механизму с образованием игольчатой структуры.

Титан обладает высокой коррозионной и химической стойкостью благодаря защитной окисной пленке на его поверхности. Он не корродирует в пресной и морской воде, минеральных кислотах, царской водке и др.

СВОЙСТВА

Кристаллы титана

Точка плавления 1671 °C, точка кипения 3260 °C, плотность α-Ti и β-Ti соответственно равна 4,505 (20 °C) и 4,32 (900 °C) г/см³, атомная плотность 5,71×1022 ат/см³. Пластичен, сваривается в инертной атмосфере.

Применяемый в промышленности технический титан содержит примеси кислорода, азота, железа, кремния и углерода, повышающие его прочность, снижающие пластичность и влияющие на температуру полиморфного превращения, которое происходит в интервале 865-920 °С.

Для технического Титана марок ВТ1-00 и ВТ1-0 плотность около 4,32 г/см3, предел прочности 300-550 Мн/м2 (30-55кгс/мм2), относительное удлинение не ниже 25%, твердость по Бринеллю 1150-1650 Мн/м2 (115-165 кгс/мм2). Является парамагнетиком. Конфигурация внешней электронной оболочки атома Ti 3d24s2.

Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок.

При обычной температуре покрывается защитной пассивирующей пленкой оксида TiO2, благодаря этому коррозионностоек в большинстве сред (кроме щелочной). Титановая пыль имеет свойство взрываться. Температура вспышки 400 °C.

Запасы и добыча

Кристаллы титана

Основные руды: ильменит (FeTiO3), рутил (TiO2), титанит (CaTiSiO5).

На 2002 год, 90 % добываемого титана использовалось на производство диоксида титана TiO2. Мировое производство диоксида титана составляло 4,5 млн т. в год. Подтвержденные запасы диоксида титана (без России) составляют около 800 млн т.

На 2006 год, по оценке Геологической службы США, в пересчёте на диоксид титана и без учёта России, запасы ильменитовых руд составляют 603—673 млн т., а рутиловых — 49.7—52.7 млн т.

Таким образом, при нынешних темпах добычи мировых разведанных запасов титана (без учёта России) хватит более чем на 150 лет.

Россия обладает вторыми в мире, после Китая, запасами титана. Минерально-сырьевую базу титана России составляют 20 месторождений (из них 11 коренных и 9 россыпных), достаточно равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 миллиарда тонн.

Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки — порошок диоксида титана TiO2. Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана их при 850 °C восстанавливают магнием.

Полученную титановую «губку» переплавляют и очищают. Ильменитовые концентраты восстанавливают в электродуговых печах с последующим хлорированием возникающих титановых шлаков.

ПРОИСХОЖДЕНИЕ

Титановая руда

Титан находится на 10-м месте по распространённости в природе. в земной коре — 0,57 % по массе, в морской воде — 0,001 мг/л. В ультраосновных породах 300 г/т, в основных — 9 кг/т, в кислых 2,3 кг/т, в глинах и сланцах 4,5 кг/т.

В земной коре титан почти всегда четырёхвалентен и присутствует только в кислородных соединениях. В свободном виде не встречается. Титан в условиях выветривания и осаждения имеет геохимическое сродство с Al2O3. Он концентрируется в бокситах коры выветривания и в морских глинистых осадках.

Перенос титана осуществляется в виде механических обломков минералов и в виде коллоидов. До 30 % TiO2 по весу накапливается в некоторых глинах. Минералы титана устойчивы к выветриванию и образуют крупные концентрации в россыпях. Известно более 100 минералов, содержащих титан.

Важнейшие из них: рутил TiO2, ильменит FeTiO3, титаномагнетит FeTiO3 + Fe3O4, перовскит CaTiO3, титанит CaTiSiO5. Различают коренные руды титана — ильменит-титаномагнетитовые и россыпные — рутил-ильменит-цирконовые.

Месторождения титана находятся на территории ЮАР, России, Украины, Китая, Японии, Австралии, Индии, Цейлона, Бразилии, Южной Кореи, Казахстана. В странах СНГ ведущее место по разведанным запасам титановых руд занимает РФ (58.5%) и Украина (40.2%).

ПРИМЕНЕНИЕ

Изделия из титана

Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Титан легок по сравнению с другими металлами, но в то же время может работать при высоких температурах.

Из титановых сплавов изготовляют обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%.

Из титановых сплавов производят диски и лопатки компрессора, детали воздухозаборника и направляющего аппарата, крепеж.

Также титан и его сплавы используют в ракетостроении. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести.

Технический титан из-за недостаточно высокой теплопрочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении.

Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т.п.

Только титан обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Из титана делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей).

В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На титан и его сплавы не налипают ракушки, которые резко повышают сопротивление судна при его движении.

Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и дефицитностью титана.

Титан (англ. Titanium) — Ti

Кристаллографические свойства



Свойства космического металла титана: низкая плотность, высокая температура плавления и коррозионная стойкость

При какой температуре плавится титан

Космический металл, материал будущего, превращающий мечту в реальность — всё это о титане, серебристо-белом, прочном и лёгком.

Занимая девятое место по распространённости в природе, он отлично зарекомендовал себя в аэрокосмической и нефтехимической промышленности, машиностроении и медицине.

Чудо-металл даже открыт был необычно, а изучение его свойств помогло человечеству выйти на новый уровень развития.

Всё началось в 1791 году, когда, независимо друг от друга, одновременно У. Грегор (Англия) и М. Г. Клапрот (Германия) получили двуокись титана, но не сумели выделить из неё чистое вещество.

Минералог и, по совместительству, сельский священник Грегор изучал чёрный железистый песок, найденный в окрестностях своего прихода.

Результатом стало извлечение соединения титана — блестящих крупиц, которые названием «менакин» (от минерала менаканит) увековечили родные места англичанина.

Примерно в это же время химик Клапрот, изучая красные пески, привезённые из Венгрии, нашёл в минерале рутиле новое вещество и назвал его «титан». А, спустя несколько лет, доказал, что рутил и менакеновая земля — одинаковые соединения.

В 1825 году шведским химиком Берцелиусом был получен первый образец металлического титана, но это не позволило продвинуться в исследовании свойств, так как примеси делали образец хрупким и неподходящим для механической обработки.

Только в 1925 году голландские химики ван Аркел и де Бур, применив термическое разложение иодида титана, не нашедшее широкого использования, получили вещество с 99,9% чистотой. Такой металл обладал пластичностью, его можно было раскатывать в листы, проволоку и фольгу.

Это позволило начать полномасштабное изучение физических и химических свойств, привлечь внимание инженеров и строителей, наметить сферы применения.

А уже в 1940 году появился кролловский процесс восстановления четырёххлористого титана магнием, успешно используемый и до сих пор.

Теории происхождения названия

Существует две теории возникновения наименования:

  • Первая, подчёркивающая основные свойства металла титана — лёгкость и прочность, связана с именем персонажа германской легенды — эльфийской царицы Титании.
  • Другая теория отсылает к древнегреческой мифологии, где титанами называли могучих братьев — божеств второго поколения, детей богов Урана и Геи. Отголоски этого слышатся и в названии элемента урана.

Титан занимает почётное четвёртое место по содержанию в земной коре среди важных для человека металлов, уступая только железу, магнию и алюминию.

Максимальное его количество сосредоточено в нижнем, базальтовом слое, немного меньше — в гранитном. Принимая во внимание высокую химическую активность, найти титан в чистом виде не представляется возможным.

Наиболее распространены четырёхвалентные оксиды, которые концентрируются в рудах коры выветривания и в морской глине.

Сегодня насчитывают до 75 титановых минералов, а учёные периодически заявляют об открытии всё новых форм и соединений. Для промышленной переработки наибольшее значение имеют:

  • Ильменит.
  • Лейкоксен (продукт изменения ильменита).
  • Рутил.
  • Титанит (сфен).
  • Перовскит.
  • Анатаз.
  • Титаномагнетит.
  • Брукит.

Титан — слабый мигрант, он может переноситься только в виде механических обломков каменной породы или при перемещениях коллоидных илистых слоёв водоёмов.

Для биосферы характерно содержание максимальных количеств этого металла в морских водорослях, у животных он обнаружен в шерсти и роговых тканях, в организме человека присутствует в щитовидной железе, селезёнке, надпочечниках и плаценте.

Месторождения космического материала

Самыми распространёнными являются залежи ильменита, они составляют порядка 800 млн тонн. Запасы рутиловых руд значительно меньше, но при сохранении роста добычи все они могут обеспечить человечество ещё на 100 лет.

По запасам титана Россия уступает только Китаю и насчитывает 20 разведанных месторождений. Большинство из них — комплексные, где добывают также железо, фосфор, ванадий и цирконий.

Сегодня крупнейшим мировым производителем титана считается российская металлургическая компания «ВСМПО-АВИСМА».

Обширные залежи располагаются на территории ЮАР, Украины, Канады, США, Бразилии, Австралии, Швеции, Норвегии, Египта, Казахстана, Индии и Южной Кореи.

Они различаются содержанием металла в рудах и объёмами добычи, геологические изыскания не прекращаются. Даже на Луне были обнаружены запасы титаносодержащих руд, некоторые из них в десятки раз богаче крупных месторождений Земли.

Это позволяет надеяться на снижение рыночных цен металла и расширение сферы использования.

Titanium — химический элемент периодической таблицы Менделеева, находится в IV группе четвёртого периода.

Имеет атомный номер 22, молярную массу 47,867, обозначается символом Ti и проявляет степени окисления от 2 до 4, наиболее устойчивы его четырёхвалентные соединения.

При нормальном давлении температура плавления титана равна 1670 ± 2 °C, он относится к цветным тугоплавким металлам и по внешнему виду напоминает сталь.

Твёрдость, пластичность и предел текучести — важные параметры для любого металла, которые определяют сферу применения. Титан в 12 раз прочнее алюминия, в 4 раза меди и железа.

А ещё он гораздо легче их всех (плотность титана всего 4,54 г/см 3) и свободно обрабатывается методами сварки, клёпки, ковки и проката.

К важным особенностям относятся низкие показатели теплопроводности и электропроводности, которые остаются неизменными даже при высоких температурах.

Титан проявляет парамагнитные свойства: не намагничивается в магнитном поле, подобно никелю и железу, и не выталкивается, как серебро и золото. Его плохие антифрикционные свойства обусловлены налипанием на многие материалы.

Уникальны показатели коррозионной стойкости и сопротивления механическому воздействию: пластины из титана, десять лет пролежавшие на дне моря, не претерпят изменений внешнего вида и состава, а железо за это время разложится полностью.

Химические свойства

Высокая коррозийная стойкость объясняется тем, что в нормальных условиях на поверхности металла присутствует оксидная плёнка. Однако в виде порошка, тонкой стружки или проволоки он способен самовоспламеняться и взрываться.

Титан устойчив к водным растворам хлора и многим разбавленным щелочам и кислотам, кроме плавиковой, ортофосфорной и серной.

Сварку и плавку производят в вакууме, потому что при даже незначительном нагреве проявляется одно из главных свойств титана — активное поглощение газов окружающей атмосферы.

Реакция с водородом, которая начинается при 60 °C, обратима, полученные гидриды при нагревании снова разлагаются. На воздухе при температуре 1200 °C титан пылает ярким белым пламенем, и только он способен гореть в атмосфере азота при температуре выше 400 °C с образованием нитридов.

Для взаимодействия с галогенами необходимыми условиями являются отсутствие влаги и наличие катализатора — высокой температуры. При реакции с углеродом получается сверхтвёрдый карбид.

С большинством металлов титан образует высокопрочные конструкционные или жаростойкие сплавы и интерметаллические соединения, часто применяется в качестве важного легирующего компонента.

Способ получения из сырья

Исходное сырьё — двуокись титана, содержащая мало посторонних примесей. Для этого нужен рутиловый концентрат, получаемый обогащением руды.

Но его мировые запасы невелики, и чаще применяют титановый шлак (синтетический рутил), который получают термической обработкой — обогащением ильменитовых концентратов в электродуговой печи.

В результате железо в виде чугуна собирается на дне специальной ванны, и остаётся порошок серого цвета — шлак, содержащий оксид титана. Его измельчают, смешивают с углём, брикетируют и хлорируют в печах, где при 800 °C в присутствии углерода образуются пары четырёххлористого титана.

Потом их очищают и в специальных реакторах восстанавливают магнием при 950 °C. На стенках образуется спёкшаяся пористая масса, титановая губка, которую для сепарации от соединений магния прокаливают в вакууме.

Чтобы изготовить слитки титана используют плавку полученной губки в вакуумно-дуговых печах. Это предохраняет металл от окисления и способствует окончательному освобождению от примесей.

Готовые слитки с чистотой до 99,7% используют для обработки давлением (прокатка, штамповка, ковка).

Основные сферы применения

Сложно описать все области жизни, где нашлось место титану, но среди основных направлений можно отметить:

  • Главные потребители — аэрокосмическая отрасль и ракетостроение. Высокая температура плавления и лёгкость являются неоценимыми преимуществами титана при использовании в качестве «летающего» конструкционного материала. Для самолёта, например, это элероны и лонжероны, поворотные узлы крыльев, трубопроводы и шпангоуты. Глубоко символично, что в 1980 году установленный в Москве памятник Ю. А. Гагарину сделан из этого космического металла.
  • Судостроение тоже нуждается в лёгких и коррозионно-стойких материалах. В конце 70-х годов ХХ века практически весь годовой объем выпуска титана в Советском Союзе пошёл на создание ядерной подводной лодки, где он служил основным конструкционным материалом. Результатом стали снижение на одну треть веса субмарины, её парамагнетизм, максимальные показатели глубины погружения и скорости под водой.
  • Титановые пластины применяют в бронежилетах. Вес лёгкого бронежилета — 4 кг, тяжёлого — 10,5 кг. Даже одна такая полоса толщиной всего 5 мм надёжно защищает от пистолетных и ружейных пуль.
  • Металл незаменим для нужд химической промышленности ввиду антикоррозийной стойкости в большинстве агрессивных сред и при высоких температурах: приборы и трубопроводы, ёмкости хранения и перегонки, фильтры и запорная арматура.
  • Для придания сталям твёрдости и жаропрочности его используют как легирующую добавку.
  • Сплавы титана служат для изготовления режущих и хирургических инструментов, ювелирных изделий. Металл не отторгается человеческим телом, поэтому его применяют в медицине для создания имплантатов.
  • Издавна здания в европейских городах покрывались цинковыми листами. В ХХ веке для этих нужд был создан экологически чистый и долговечный материал цинк-титан. Его отличная пластичность помогает изготавливать кровли практически всех контуров и формировать любые нестандартные конструкции фасадов.
  • Производство стройматериалов, красок, резины, пластмасс, бумаги и пищевых добавок трудно представить без соединений титана. Они востребованы в электротехнике, их можно найти в составе тугоплавких стёкол и керамических деталей, в опорах буровых платформ, работающих в экстремальных морских условиях, и корпусах домашних компьютеров.

Сфера применения титана постоянно расширяется, её сдерживают сложность и энергоёмкость процесса получения чистого вещества. Отчасти поэтому традиционные железо и алюминий сегодня ещё прочно удерживают позиции. Титан — дорогое удовольствие.

Цена металла в виде концентрата в сотни раз меньше стоимости готовой продукции, например, листового проката.

Сегодня такие расходы доступны далеко не всем, поэтому применение титана определяет уровень экономического развития и обороноспособности государства.

Двоякость свойств металла титан

При какой температуре плавится титан

Многих интересует немного загадочный и не до конца изученный титан — металл, свойства которого отличаются некоторой двоякостью. Металл и самый прочный, и самый хрупкий.

Самый прочный и самый хрупкий металл

Его открыли двое ученых с разницей в 6 лет — англичанин У. Грегор и немец М. Клапрот.

Название титана связывают, с одной стороны, с мифическими титанами, сверхъестественными и бесстрашными, с другой стороны, с Титанией — королевой фей.

Это один из самых распространенных в природе материалов, но процесс получения чистого металла отличается особой сложностью.

Свойства титана

22 химический элемент таблицы Д. Менделеева Titanium (Ti) относится к 4 группе 4 периода.

Цвет титана серебристо-белый с выраженным блеском. Его блики переливаются всеми цветами радуги.

Это один из тугоплавких металлов. Он плавится при температуре +1660 °С (±20°). Титан отличается парамагнитностью: он не намагничивается в магнитном поле и не выталкивается из него.Металл характеризуется низкой плотностью и высокой прочностью.

Но особенность этого материала заключается в том, что даже минимальные примеси других химических элементов кардинально изменяют его свойства.

При наличии ничтожной доли других металлов титан теряет свою жаропрочность, а минимум неметаллических веществ в его составе делают сплав хрупким.

Эта особенность обуславливает наличие 2 видов материала: чистого и технического.

  1. Титан чистого вида используют там, где требуется очень легкое вещество, выдерживающее большие нагрузки и сверхвысокие температурные диапазоны.
  2.  Технический материал применяется там, где ценятся такие параметры, как легкость, прочность и устойчивость к коррозии.

Вещество обладает свойством анизотропности. Это означает, что металл может изменять свои физические характеристики, исходя из приложенных усилий. На эту особенность следует обращать внимание, планируя применение материала.

Титан теряет прочность при малейшем присутствии в нем примесей других металлов

Проведенные исследования свойств титана в нормальных условиях подтверждают его инертность.

Вещество не реагирует на элементы, находящиеся в окружающей атмосфере.Изменение параметров начинается при повышении температуры до +400°С и выше.

Титан вступает в реакцию с кислородом, может воспламеняться в азоте, впитывает газы.

Эти свойства затрудняют получение чистого вещества и его сплавов. Производство титана основано на применении дорогостоящей вакуумной аппаратуры.

Титан и конкуренция с другими металлами

Этот металл постоянно сравнивают с алюминием и сплавами железа. Многие химические свойства титаназначительно лучше, чем у конкурентов:

  1. По механической прочности титан превосходит железо в 2 раза, а алюминий в 6 раз. Прочность его увеличивается при снижении температуры, чего не отмечается у конкурентов.
    Антикоррозионные характеристики титана значительно превышают показатели других металлов.
  2. При температурах окружающей среды металл абсолютно инертен. Но при повышении температуры свыше +200°С вещество начинает поглощать водород, изменяя свои характеристики.
  3. При более высоких температурах титан вступает в реакции с другими химическими элементами. Он обладает высокой удельной прочностью, что в 2 раза превосходит свойства лучших сплавов железа.
  4. Антикоррозионные свойства титана значительно превышают показатели алюминия и нержавеющей стали.
  5. Вещество плохо проводит электричество. Титан имеет удельное электросопротивление в 5 раз выше, чем у железа, в 20 раз, чем у алюминия, и в 10 раз выше, чем у магния.
  6. Титан характеризуется низкой теплопроводностью, это обусловлено низким коэффициентом температурного расширения. Она меньше в 3 раза, чем у железа, и в 12, чем у алюминия.

Какими способами получают титан?

Материал занимает 10 место по распространению в природе. Существует около 70 минералов, содержащих титан в виде титановой кислоты или его двуокиси. Наиболее распространенные из них и содержащие высокий процент производных металла:

  • ильменит;
  • рутил;
  • анатаз;
  • перовскит;
  • брукит.

Основные залежи титановых руд находятся в США, Великобритании, Японии, большие месторождения их открыты в России, Украине, Канаде, Франции, Испании, Бельгии.

Добыча титана – дорогой и трудозатратный процесс

Получение металла из них стоит очень дорого. Ученые разработали 4 способа производства титана, каждый из которых рабочий и эффективно используется в промышленности:

  1. Магниетермический способ. Добытое сырье, содержащее титановые примеси, перерабатывают и получают диоксид титана. Это вещество подвергается хлорированию в шахтных или солевых хлораторах при повышенном температурном режиме. Процесс очень медленный, ведется в присутствии углеродного катализатора. При этом твердый диоксид переводится в газообразное вещество – тетрахлорид титана. Полученный материал восстанавливается магнием или натрием. Сплав, образовавшийся при реакции, подвергают нагреванию в вакуумной установке до сверхвысоких температур. В результате реакции происходит испарение магния и его соединений с хлором. В конце процесса получают губкоподобный материал. Его плавят и получают титан высокого качества.
  2. Гидридно-кальциевый способ. Руду подвергают химической реакции и получают гидрид титана. Следующий этап – разделение вещества на составляющие. Титан и водород выделяют в процессе нагревания в вакуумных установках. По окончании процесса получают оксид кальция, который отмывают слабыми кислотами. Первые два способа относятся к промышленному производству. Они позволяют получать в кратчайшие сроки чистый титан с относительно небольшими издержками.
  3. Электролизный метод. Титановые соединения подвергают воздействию током большой силы. В зависимости от исходного сырья, соединения разделяются на составляющие: хлор, кислород и титан.
  4. Йодидный способ или рафинирование. Полученный из минералов диоксид титана обдают парами йода. В результате реакции образуется йодид титана, который нагревают до высокой температуры – +1300…+1400°С и воздействуют на него электрическим током. При этом из исходного материала выделяются составляющие: йод и титан. Металл, полученный данным способом, не имеет примесей и добавок.

Области применения

Применение титана зависит от степени его очистки от примесей. Наличие даже небольшого количества других химических элементов в составе сплава титана кардинально меняет его физико-механические характеристики.

Титан с некоторым количеством примесей называется техническим. Он имеет высокие показатели коррозийной стойкости, это легкий и очень прочный материал. От этих и других показателей зависит его применение.

  • В химической промышленности из титана и его сплавов изготавливают теплообменники, различного диаметра трубы, арматуру, корпуса и детали для насосов различного назначения. Вещество незаменимо в местах, где требуются высокая прочность и стойкость к кислотам.
  • На транспорте титан используют для изготовления деталей и агрегатов велосипедов, автомобилей, железнодорожных вагонов и составов. Применение материала уменьшает вес подвижных составов и автомобилей, придает легкость и прочность велосипедным деталям.
  • Большое значение титан имеет в военно-морском ведомстве. Из него изготавливают детали и элементы корпусов для подводных лодок, пропеллеры для лодок и вертолетов.
  • В строительной промышленности применяется сплав цинк-титан. Он используется как отделочный материал для фасадов и кровель. Этот очень прочный сплав имеет важное свойство: из него можно изготавливать архитектурные детали самой фантастической конфигурации. Он может принимать любую форму.
  • В последнее десятилетие титан широко применяют в нефтедобывающей отрасли. Сплавы его применяют при изготовлении оборудования для сверхглубокого бурения. Материал используется для изготовления оборудования для добычи нефти и газа на морских шельфах.

У титана очень широкая область применения

Чистый титан имеет свои области применения. Он нужен там, где необходима стойкость к высоким температурам и при этом должна сохраняться прочность металла.

Его применяют в:

  • авиастроении и космической отрасли для изготовления деталей обшивки, корпусов, элементов крепления, шасси;
  • медицине для протезирования и изготовления сердечных клапанов и других аппаратов;
  • технике для работы в криогенной области (здесь используют свойство титана – при снижении температуры усиливается прочность металла и не утрачивается его пластичность).

В процентном соотношении использование титана для производства различных материалов выглядит так:

  • на изготовление краски используется 60 %;
  • пластик потребляет 20 %;
  • в производстве бумаги используют 13 %;
  • машиностроение потребляет 7 % получаемого титана и его сплавов.

Сырье и процесс получения титана дорогостоящие, затраты на его производство компенсируются и окупаются сроком службы изделий из этого вещества, его способностью не менять свой внешний вид за весь период эксплуатации.

Физические и механические свойства

Титан является довольно тугоплавким металлом. Температура его плавления составляет 1668±3°С. По этому показателю он уступает таким металлам, как тантал, вольфрам, рений, ниобий, молибден, тантал, цирконий. Титан – это парамагнитный металл. В магнитном поле он не намагничивается, но не выталкивается из него.

Изображение 2
Титан обладает низкой плотностью (4,5 г/см³) и высокой прочностью (до 140 кг/мм²). Эти свойства практически не меняются при высоких температурах. Он более чем в 1,5 раза тяжелее алюминия (2,7 г/см³), зато в 1,5 раза легче железа (7,8 г/см³). По механическим свойствам титан намного превосходит эти металлы.

По прочности титан и его сплавы располагаются в одном ряду со многими марками легированных сталей.

По стойкости к коррозии титан не уступает платине. Металл обладает отличной устойчивостью в условиях кавитации. Пузырьки воздуха, образующиеся в жидкой среде при активном движении титановой детали, практически не разрушают её.

Это прочный металл, способный сопротивляться разрушению и пластической деформации. Он в 12 раз твёрже алюминия и в 4 раза – меди и железа. Ещё один важный показатель – это предел текучести. С увеличением этого показателя улучшается сопротивление деталей из титана эксплуатационным нагрузкам.

В сплавах с определёнными металлами (особенно с никелем и водородом) титан способен «запоминать» форму изделия, созданную при определённой температуре. Такое изделие потом можно деформировать и оно надолго сохранит это положение. Если же изделие нагреть до температуры, при которой оно было сделано, то изделие примет первоначальную форму. Называют это свойство «памятью».

Теплопроводность титана сравнительно низкая и коэффициент линейного расширения соответственно тоже. Из этого следует, что металл плохо проводит электричество и тепло.

Зато при низких температурах он является сверхпроводником электричества, что позволяет ему передавать энергию на значительные расстояния. Также титан обладает высоким электросопротивлением.

Чистый металл титан подлежит различным видам обработки в холодном и горячем состоянии. Его можно вытягивать и делать проволоку, ковать, прокатывать в ленты, листы и фольгу с толщиной до 0,01 мм.

Из титана изготавливают такие виды проката: титановая лента, титановая проволока, титановые трубы, титановые втулки, титановый круг, титановый пруток.

Способы получения

Титан является одним из самых распространённых элементов на Земле. его в недрах планеты по массе составляет 0,57%. Самая большая концентрация металла наблюдается в «базальтовой оболочке» (0,9%), в гранитных породах (0,23%) и в ультраосновных породах (0,03%).

Существует около 70 минералов титана, в которых он содержится в виде титановой кислоты или двуокиси. Главные минералы титановых руд это: ильменит, анатаз, рутил, брукит, лопарит, лейкоксен, перовскит и сфен. Основные мировые производители титана – это Великобритания, США, Франция, Япония, Канада, Италия, Испания и Бельгия.

Существует несколько способов получения титана. Все они применяются на практике и вполне эффективны.

1. Магниетермический процесс

Добывают руду, содержащую титан и перерабатывают его в диоксид, который медленно и при очень высоких температурных значениях подвергают хлорированию. Хлорирование проводят в углеродной среде.

Затем хлорид титана, образовавшийся в результате реакции, восстанавливают магнием. Полученный металл нагревают в вакуумном оборудовании при высокой температуре. В результате магний и хлорид магния испаряются, остаётся титан с множеством пор и пустот.

Губчатый титан переплавляют для получения качественного металла.

2. Гидридно-кальциевый метод

Сначала получают гидрид титана, а затем разделяют его на компоненты: титан и водород. Процесс происходит в безвоздушном пространстве при высокой температуре.

Образуется оксид кальция, который проходит отмывку слабыми кислотами.
Гидридно-кальциевый и магниетермический методы обычно используются в промышленных масштабах.

Эти методы позволяют получить значительное количество титана за небольшой промежуток времени, с минимальными денежными затратами.

3. Электролизный метод

Хлорид или диоксид титана подвергается воздействию высокой силы тока. В результате происходит разложение соединений.

4. Йодидный метод

Диоксид титана взаимодействует с парами йода. Далее на титановый йодид воздействуют высокой температурой, в результате чего получается титан. Этот метод является наиболее эффективным, но и самым дорогостоящим. Титан получается очень высокой чистоты без примесей и добавок.

Применение титана

Благодаря хорошим антикоррозионным свойствам титан используют для изготовления химической аппаратуры. Высокая жаростойкость металла и его сплавов способствует применению в современной технике. Сплавы титана – это прекрасный материал для самолётостроения, ракетостроения и судостроения.

Из титана создают памятники. А колокола из этого металла известны необычайным и очень красивым звучанием. Двуокись титана является компонентом некоторых лекарственных препаратов, например: мази против кожных заболеваний. Также большим спросом пользуются соединения металла с никелем, алюминием и углеродом.

Титан и его сплавы нашли применение в таких сферах, как химическая и пищевая промышленность, цветная металлургия, электроника, ядерная техника, энергомашиностроение, гальванотехника.

Вооружение, броневые плиты, хирургические инструменты и имплантаты, оросительные установки, спортинвентарь и даже украшения делают из титана и его сплавов.

В процессе азотирования на поверхности металла образуется золотистая плёнка, не уступающая по красоте даже настоящему золоту.

Физические характеристики и свойства одного из самых твердых металлов — титана

При какой температуре плавится титан

Титан – элемент 4 группы 4 периода. Переходный металл, проявляет и основные, и кислотные свойства, довольно широко распространен в природе – 10 место.

Наиболее интересным для народного хозяйства является сочетание высокой твердости металла и легкости, что делает его незаменимым элементом для авиастроения.

Данная статья расскажет вам о маркировке, легирующих и иных свойствах металла титана, даст общую характеристику и интересные факты о нем.

По внешнему виду металл больше всего напоминает сталь, однако механические его качества выше. При этом титан отличается малым весом – молекулярная масса 22. Физические свойства элемента изучены довольно хорошо, однако сильно зависят от чистоты металла, что приводит к существенным отклонениям.

Кроме того, имеет значение его специфические химические свойства.

Титан устойчив к щелочам, азотной кислоте, и в то же время бурно взаимодействует с сухими галогенами, а при более высокой температуре – с кислородом и азотом.

Хуже того, он начинает поглощать водород еще при комнатной температуре, если имеется активная поверхность. А в расплаве впитывает кислород и водород настолько интенсивно, что расплавление приходится проводить в вакууме.

Еще одна важная особенность, определяющая физические характеристики – существование 2 фаз состояния.

  • Низкотемпературная – α-Ti имеет гексагональную плотноупакованную решетку, плотность вещества – 4,55 г/куб. см (при 20 С).
  • Высокотемпературная – β-Ti характеризуется объемно-центрированный кубической решеткой, плотность фазы, соответственно, меньше – 4, 32 г/куб. см. (при 900С).

Температура фазового перехода – 883 С.

В обычных условиях металл покрывается защитной оксидной пленкой. При ее отсутствии титан представляет большую опасность. Так, титановая пыль может взрываться, температура такой вспышки 400С. Титановая стружка является пожароопасным материалом и хранится в специальной среде.

Далее мы рассмотрим магнитные, механические, химические и физические свойства титана, его сплавов и их применение.

О структуре и свойствах титана рассказывает видео ниже:

Титан на сегодня является самым прочным среди всех существующих технических материалов, поэтому, несмотря на сложность получения и высокие требования по безопасности к производственному процессу, применяется достаточно широко.

Физические характеристики элемента довольно необычны, однако очень сильно зависят от чистоты.

Так, чистый титан и сплавы активно применяются в ракето- и авиастроении, а технический непригоден, так как из-за примесей теряет прочность при высоких температурах.

Плотность металла

Плотность вещества изменяется в зависимости от температуры и фазы.

  • При температурах от 0 до температуры плавления уменьшается от 4,51 до 4,26 г/куб. см, причем во время фазового перехода повышаете на 0,15%, а затем вновь уменьшается.
  • Плотность жидкого металла составляет 4,12 г/куб. см, а затем уменьшается с повышением температуры.

Температуры плавления и кипения

Фазовый переход разделяет все свойства металла на качества, которые может проявлять α- и β-фазы. Так, плотность до 883 С, относится к качествам α-фазы, а температуры плавления и кипения – к параметрам β-фазы.

  • Температура плавления титана (в градусах) составляет 1668+/-5 С;
  • Температура кипения достигает 3227 С.

Это один из наиболее жаростойких металлов, известных в металлургии.

Далее указана краткая характеристика титана с т.з. механических особенностей.

Горение титана рассмотрено в этом видеоролике:

Титан примерно в 2 раза прочнее железа и в 6 раз – алюминия, что и делает его столь ценным конструкционным материалом. Показатели относятся к свойствам α-фазы.

  • Предел прочности вещества при растяжении составляет 300–450 МПа. Показатель можно увеличить до 2000 МПа, добавив некоторые элементы, а также прибегнув к специальной обработке – закалке и старению.

Интересно то, что высокую удельную прочность титан сохраняет и при самых низких температурах. Более того, при понижении температуры прочность на изгиб растет: при +20 С показатель составляет 700 МПа, а при -196 – 1100 МПа.

  • Упругость металла относительно невелика, что является существенным недостатком вещества. Модуль упругости при нормальных условиях 110,25 ГПа. Кроме того, титану свойственна анизотропия: упругость по разным направлениям достигает разного значения.
  • Твердость вещества по шкале НВ составляет 103. Причем показатель это усредненный. В зависимости от чистоты металла и характера примесей твердость может быть и выше.
  • Условный предел текучести составляет 250–380 МПа. Чем выше этот показатель, тем лучше изделия из вещества противостоят нагрузкам и тем больше сопротивляются износу. Показатель титана превосходит показатель алюминия в 18 раз.

По сравнению с другими металлами, имеющими такую же решетку, металл обладает очень приличной пластичностью и ковкостью.

Далее рассмотрена удельная теплоемкость титана.

Теплоемкость

Металл отличается низкой теплопроводностью, поэтому в соответствующих областях – изготовление термоэлектродов, например, не применяется.

  • Теплопроводность его составляет 16,76 l , Вт/(м × град). Это меньше чем у железа в 4 раза и в 12 раз меньше, чем у алюминия.
  • Зато коэффициент термического расширения у титана ничтожен при нормальной температуре и возрастает при повышении температуры.
  • Теплоемкость металла составляет 0,523 кдж/(кг·К).

Электрические характеристики

Как чаще всего и бывает, низкая теплопроводность обеспечивает и низкую электропроводность.

  • Удельное электросопротивление металла весьма велико – 42,1·10-6 ом·см в нормальных условиях. Если считать проводимость серебра равной 100%, то проводимость титана будет равна 3,8%.
  • Титан является парамагнитом, то есть, его нельзя намагничивать в поле, как железо, но и выталкиваться из поля, как медь он не будет. Свойство это с понижением температуры линейно уменьшается, но, пройдя минимум, несколько увеличивается. Удельная магнитная восприимчивость составляет 3,2 10-6 Г-1. Стоит отметить, что восприимчивость, так же как и упругость образует анизотропию и изменяется в зависимости от направления.

При температуре 3,8 К титан становится сверхпроводником.

Коррозионная стойкость

В нормальных условиях титан отличается очень высокими антикоррозийными свойствами. На воздухе его покрывает слой оксида титана толщиной в 5–15 мкм, что и обеспечивает отличную химическую инертность.

Металл не корродирует в воздухе, морском воздухе, морской воде, влажном хлоре, хлорной воде и многочисленных других технологических растворах и реагентах, что делает материал незаменимым в химической, бумагоделательной, нефтяной промышленности.

При повышении температуры или сильном измельчении металла картина резко меняется. Металл реагирует едва ли не со всеми газами, входящими в состав атмосферы, а в жидком состоянии еще и впитывает их.

Далее рассмотрена токсичность титана.

Титан является одним из самых биологически инертных металлов. В медицине он применяется для изготовления протезов, так как отличается стойкостью к коррозии, легкостью и долговечностью.

Диоксид титана не столь безопасен, хотя используется куда чаще – в косметологической, пищевой промышленности, например.

По некоторым данным – UCLA, исследования профессора патологии Роберта Шистла, наночастицы диоксида титана воздействуют на генетический аппарат и могут способствовать развитию рака.

Причем через кожный покров вещество не проникает, поэтому применение солнцезащитных средств, в составе которых есть диоксид, опасности не представляет, а вот вещество, попадающее внутрь организма – с пищевыми красителями, биологическими биодобавками, может оказаться опасным.

Титан – уникально прочный, твердый и легкий металл с очень интересными химическими и физическими свойствами. Это сочетание настолько ценно, что даже сложности с выплавкой и очисткой титана производителей не останавливают.

О том, как отличить титан от стали, этот видеосюжет и расскажет:

Сделай своими руками
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: